Proxy Design Pattern

An Example: Lazy Image Loading

in a Web Browser

¢ When an HTML file contains an image(s), a browser

— Displays a bounding box (placeholder) for each image

first
¢ Until the browser fully downloads the image.

— Most users are not patient enough to keep watching a blank browser

window until all text and images are downloaded and displayed.

— Replaces the bounding box with
the real image.

0

Proxy Design Pattern

e |ntent

— Provide a surrogate (or placeholder, or mock) for
another object to control access to it.

Web
Server

Web
Server

Requests
www.foo.com/index.html

Receives and parses

index.html S
- Without
Requests images (a request per image) Lazy Image Loading
Receives images. @ {5
Displays text and !
images
Requests

www.foo.com/index.html

Receives and parses
index.html. Displa;s placeholders

text and image N 5 With
placeholders. Lazy Image Loading

Requests images (a reg/image) [—— —] text

R

Replaces image placeholders with.downloaded images.

Client

l Client code (browser):

| Browser [<<interface>> Image img = new ImageProxy(...); <<interface>>
Image img.draw(); Image
+draw() +draw()
+getExt(K) +getExtent()
. B
rTTTTos Emmmmm e N Obtained from an HTML file Fe————-- A mmmmm——— "
: . (e.g. width=+100" height=“50") ' !
ImageProxy o0 1| Imagelmpl Or, the default extent is used \ ImageProxy 0.1 |_Imagelmpl
- extent - extent > _extent -extent
image image
+ImageProxy() +draw() +ImageProxy(.¥J] +draw()
+draw() +getExtent() +draw() \ +getExtent()
+getExtent() +getExtent() extent=
-drawBBox() -drawBBox() image = nuII
-fetchlmage() -fetchimage()<—] fetchlmage(...);
Create a thread, which starts downloading an
Proxy Class image from a remote web site. Once it is done,
make an instance of Imagelmpl, assigns it to
5 “‘image” and call image.draw().
, -
What’s the Point?
Client code (browser): . .
Image img = new ImageProxy(...); <<interface>> ° Separate bound/ng box p/acement (/azy image
img.draw(); - '(')“age loading) and image rendering.
+draw . .
+getExtent() — Make the two concerns independent with each
AN other
1 . . C L -
Obtained from an HTML file Pm————— - LR - » Separation of concerns to improve maintainability
(e.g. width=100" height=“50") ' !
Or, the default extent is used \ ImageProxy 0.1 Imagelmpl
M -extent] -extent <<interf >
if(image == null){ image I g ml ertace
. +ImageProxy(..<J] raw() mage
drawBBox(getExtent()); s dron) \ +getExtent() yaN
} e_lse { -drawBBox() extent = .
image.draw(); } - +getExtent() image = null; F——————— B -
/ -fetchlmage(...)‘—\ fetchlmage(...); : 0.1 :
Create a thread, which starts downloading an ImageProxy . Imagelmpl

if(image == null){
return extent;
}else {
return image.getExtent(); }

image from a remote web site. Once it is done, mage Image rendering
make an instance of Imagelmpl, assigns it to

“image” and call image.draw(). 7

Lazy image loading

» Separation of concerns improves maintainability

 When a change is made on bounding box
placement, you can leave image rendering as it is.
— The look-and-feel of a bounding box may change.
— Concurrency policy may change.

 When a change is made on image rendering, you
can leave bounding box placement as it is.
— New image formats may be introduced.
— Image rendering algorithms may be upgraded.

Supporting a New Rendering Algorithm

Client code (browser):

Image img = new ImageProxy(...);

img.draw();

if(image == null){

drawBBox(getExtent());

}else {
image.draw2();
/I image.draw();

<<interface>>
Image
draw
getE)?tent() This part is hidden
from client code.
P o
———————— ‘-——,————————1 N
! Il ! \
ImageProxy | o0.1| Imagelmpl :
extent
I e extent |
ImageProxy(...) 1 e |
>?:::ﬂg,laox() : +draw2() '
getExtent() i +getExtent() |
fetchimage() \ ’l
_______ -

* Proxy can hide image rendering from its client (browser).
— The client uses (or faces) ImageProxy, not Imagelmpl.

— When a change is made on image rendering, you don’t have
to change client code.
* New image formats may be introduced.
* Rendering algorithms may be

upgraded.

Client code (browser):
Image img = new ImageProxy(...); h

img.draw();

Client code (browser):
Image img = new ImageProxy(...);

img.draw();

if(image == null){

drawBBox(getExtent());

}else {
image.draw();

}

<<interface>>
Image
+draw() This part is hidden
"'getEXteg() from client code.

________ l_”.:-_—_:_—_:_—_l ——~\
ImageProxy [| [Imagelmpl :
- extent : — extent 1
+ImageProxy() | T +draw() 1
+draw() | +getExtent() 1
+getExtent() 1
-drawBBox() I Image !
fetchimage() \ rendering
Proxy N Ao

Create a thread, which starts downloading ag

image from a remote web site. Once it is doneéy _

<<interface>>
Image
draw()) o
getExtent() This pa'rt is hidden
A from client code.
! l
! e R
ImageProxy | 1 o 1| Imagelmpl
oxtent ; image extent
>:jrrr:;:\v?lgProxy(...) I porm
drawBBox() | +getExtent()
getExtent() |
fetehimage() : Efficientimagelmpl
| +draw()
/
—————— -

make an instance of Efficientimagelmpl, assigns it
to “image” and call image.draw().

o o o o

Supporting Multiple Image Formats

Client code (browser):
Image img = new ImageProxy(...);
img.draw();

Create a thread, which starts downloading an image

from a remote web site. Once it is

instance of Jpeglmage or Pnglmage, and assigns it to

“‘image” and call image.draw().

<<interface>>
Image
draw() . o
getExtent() This pa.rt is hidden
A from client code.
F—————— - N R J/——s
1 / ki N
’ [! \
ImageProxy 1 o1 Imagelmpl :
extent extent !
ImageProxy(...) : image draw() !
draw() getExtent() |
drawBBox() |
getExtent() | 1
pfetchimage() | :
|
Jpeglmage| |Pngimage
done, make an A C peg 9 | | 9 9’.1

_______ -

Create a thread, which starts downloading an image
from a remote web site. Once it is done, make an
instance of Jpeglmage or Pnglmage, and assigns it to

“image” and image.draw(). A condi

* ImageProxy

o o —— — —
\
ImageProxy |{ 0.1 Imagelmpl I
extent 1 extent 1

image
ImageProxy(...) 1 9 draw() :
draw() 1 getExtent()

drawBBox() ; 1
getExtent() ; 1
>fetchimage() i 1

tional comes here.

: |Jpeg|mage| |Png|mage

— Now needs to know what image formats the browser supports.

— Actually doesn’t have to (want to) know that.
* Let's separate (decouple) imagepProxy from the choice of image

formats

Two Possible Design Improvements

Client code (browser):
Image img = new ImageProxy(..) ;
img.draw() ;

ageProxy

<<interface>>
Image
+draw()
+getExtent()

* Client code

I Image rendering part is
I hidden from client code.

\
| 0 1
I
1
1

— Doesn’t have to know the details about image rendering

— Does need to know about ImagepProxy (i.€., need to know that
Proxy is used to draw images).

— Actually doesn’t have to know whether or not Proxy is used (i.e.,
whether or not lazy image loading is enabled).
» Let's separate (decouple) ImageProxy and its client. 14

One Step Further with Static Factory Method

Client code (browser):

Image |

-extent

new ImageProxy(

Image img =
Image.createJpglmage(”...jpg”, ...);
img.draw();

Client no longer need to

-Image()
+draw()

+getExtent() /
+createJpeglmdge(...): Image

newdJpeglmage(...),

L))

+createPnglmage(...): Image

face ImageProxy. It faces Image now.

________ h -
1 1
T 0..1
extent=... ImageProxy Imagelmpl
image = null; 7 ImageProxy(img:Imagelmpl,...)| image| graw()
fetchlmage(img); draw() getExtent()
drawBBox()
getExtent()
rfetchimage(img:Imagelmpl)

/_
Create a thread, which starts downloading an image

from a remote web site. Once it is done, assigns “img” to |Jpeglmage| |Pnglmage|
“‘image” and call image.draw(). No conditional blocks
come here. ImageProxy is independent from image

format choices and rendering algorithms.

Image img =

img.draw(); -extent

Client no longer need to
face ImageProxy. It faces Image now.

Client code (browser):

Image.createJpglmage(”...jpg”, ...); Image |

new ImageProxy(
-lmage() newJpegImage(D,

+draw() /

+getExtent()

+createJpeglmage(...): Image |
Image

+createanImaqe(.):

L T \
I J 1 1
! ImageProxy % Imagelmpl I
: ImageProxy(img:Imagelmpl,...) image| draw() 1

draw() getExtent() 1
| drawBBox() 1
I | getExtenty() |
I | fetchimage() |
| [
el oo JJpegImage| |Png|mgge]

This part is now hidden from client code.
Client code doesn’t have to know the details about
image loading and image rendering. 17

Face Detection in Pictures

« Suppose you are implementing an app to
organize, edit and analyze pictures.

—e.g., Photos from Apple

— The app loads each raw picture and
then superimposes a rectangle on a
human face by (dynamically) calling
an external face detection/recognition
API.

* e.g., APIs from Microsoft, Google,
Facebook, etc.

Client code (browser):

if('downloaded){

What if Everything is Integrated
in a Single Class?

Obtained from a HTML file

|mage |mg = new |mage(), Image P (eg width=“100" heig‘ht=“50")
img.draw(); oxtent Or, the default extent is used.
downloaded: boolean
Image()
draw()

[getExtent() N\ downlo_aded=fa|se;
drawBBox(getExtent(); drawBBox() extent= ...

} else { getExtent() fetchimage(...);
if(ipeg is requested){ fetchimage(}e——
drawJpeg(); Mmﬂ—\
} Create a thread, which starts downloading an
image from a remote web site. Once it is done,
call draw().

Image loading, image formats and image rendering are all mixed up and tangled
in a single class, which will not be maintainable.

Better design strategy: Separation of concerns (loosely-coupled design)

Some delay is expected to receive a face detection
result from an external API.

— The user is not patient enough to keep
watching a blank app window until
receiving a detection result.

Lazy loading of detection results
— Show the user a raw picture first.

— Receive a detection result.

— Replace the raw picture with a
superimposed one, which contains
a detection result.

Client code (app):
RawPicture pic = new RawPicture(...);

pic.draw(); <<interface>>
Picture
+getPath():...
+draw()
1
———————————— Tl - - ——— - 1
1
\ 1
RawPicture o 1| SuperimposedPicture
- path:...) - path:...
TRawPicture() superimposed
=null] +SuperimposedPicture(
+getPath():... faces:..., ...)
+draw() +getPath():...
-drawRawlmaged...) +draw()
-detectFaces(... +getFaces: LinkedList<Face>

Proxy Class

0..*] faces

Face
- faceld
- faceRectangle
- faceAttributes
| - faceLandmarks | 21

Separation of Concerns

» Lazy loading of face detection results
— How to display raw pictures

— How to call an external API and receive a detection
result

» Rendering of superimposed pictures
— How to show face contours

— What other detection results to display
* e.g., age, gender, pupil locations, smiling or not, emotion
(e.g. happy, angry, sad or surprised)

24

Client code (app):
RawPicture pic = new RawPicture(...);

pic.draw(); <<interface>>
Picture
+getPath():...
+draw()
1
path=... e m = [.

detectFaces(...); | 1
RawPicture 0.1 SuperimposedPicture
- path:... - - path:...
superimposed

*+RawPicture(...) =null] +SuperimposedPicture(

if(superimposed == null}{ | +getPath():...

drawRawlmage(...); ——p+draw() +ge:?"::;6:)
}else { -drawRawlmagey(...) +draw()

superimposed.draw(); } L) +getFaces: LinkedList<Face>

/ 0..*| faces

Create a thread, which calls an external API. Face
Instantiate SuperimposedPicture and Face once ~faceld

the API returns a detection result. Call draw() on the | _ faceRectangle
instance of SuperimposedPicture. - faceAttributes
| - faceLandmarks | 22

Further Potential Improvements

» Lazy loading of detection results is tightly
coupled with client

—You can consider further design extensions that we
saw in the previous example.
* Introducing static factory method(s) in Picture.

« An API call for face detection is embedded (or
hard-coded) in RawPicture.

— The choice of an external APl might change in the
near future.

25

Another Example: Proxies of Files and
Directories in File Systems

children FSElement

children FSElement 0-* [-name target Ihome: Directory!

0-" [-name 1 target
lr lr llinkToHome: Link

| —
o vaor_Directory | [File | [Link | Test.java: File |

parm Directory | | File | target
, .. . " . . . linkToTestJavaFile: Link
e Let’s add symbolic links in addition to files and directories L vaFile: Link|

— a.k.a. alias (Mac), shortcut (Windows) .))
> 1n -s <destination path> <link name/path> e Alink acts as a proxy of a directory or file.

e Alink acts as a proxy of a directory or file. — Alink can act as a proxy of another link too.

e Let’s use the Proxy design pattern.
26 27

HW 7: Implement This

File size. 0 for a directory and a link

hidren / FSElement <<Singleton>>
— FSElement children | - §ame: String FileSvstem
- - size: int
name 0.* - creationTime: LocalDateTime
+FSElement(parent: Directory,

4 i -nafw— return this.size;
+getSize(): int

|
. target .
| LinkableFSElement] Link Other getters and setters target

i +isDirectory(): Boolean :

0. f—— . [[
—aront|_ Directory | |_File_| Directory [File

Link

+Link(parent, name, size, creatijonTjme,
target: FSElement)

parent] -

0.*
rootDirs

28 29

| root: Directory |

!

|Apps: Directorv” bin: Directory || home: Directory ||d: Link]le: Link|

@ |v: FiIe| |pictures: Directorv!c: FiIe|

» Use this tree structure as a test fixture for your test
cases.

— Assign values to data fields (size, etc) as you like.

30

