
Proxy Design Pattern

1 2

Proxy Design Pattern
• Intent 

– Provide a surrogate (or placeholder, or mock) for 
another object to control access to it.

An Example: Lazy Image Loading
in a Web Browser 

• When an HTML file contains an image(s), a browser
– Displays a bounding box (placeholder) for each image 

first
• Until the browser fully downloads the image.

– Most users are not patient enough to keep watching a blank browser 
window until all text and images are downloaded and displayed.  

– Replaces the bounding box with
the real image. 

3 4

Web
Server

Without

Lazy Image Loading

Requests
www.foo.com/index.html

Receives and parses
index.html

Requests images (a request per image)

Receives images.
Displays text and
images 

Web
Server

With

Lazy Image Loading

Requests
www.foo.com/index.html

Receives and parses
index.html. Displays
text and image 
placeholders.

Requests images (a req/image)

placeholders

Receives images.
Replaces image placeholders with downloaded images. 

text



5

<<interface>>

Image

ImageProxy ImageImpl

+draw()

+getExtent()

+ImageProxy()
+draw()
+getExtent()
-drawBBox()
-fetchImage()

image

0..1

Browser

- extent
+draw()
+getExtent()

- extent

Proxy Class

Client

6

<<interface>>

Image

ImageProxy ImageImpl

+draw()

+getExtent()

+ImageProxy(…)
+draw()
+getExtent()
-drawBBox()
-fetchImage()

image
-extent

+draw()
+getExtent()

-extent

Obtained from an HTML file

(e.g. width=“100” height=“50”)

Or, the default extent is used.

Create a thread, which starts downloading an 

image from a remote web site. Once it is done, 

make an instance of ImageImpl, assigns it to 

“image” and call image.draw().

extent = …

image = null;

fetchImage(…);

Client code (browser):

Image img = new ImageProxy(…);

img.draw();

0..1

7

<<interface>>

Image

ImageProxy ImageImpl

+draw()

+getExtent()

+ImageProxy(…)
+draw()
-drawBBox()
+getExtent()
-fetchImage(…)

image
-extent

+draw()
+getExtent()

-extent

Obtained from an HTML file

(e.g. width=“100” height=“50”)

Or, the default extent is used.

if(image == null){

drawBBox( getExtent() );

} else {

image.draw(); }

if(image == null){

return extent;

} else {

return image.getExtent(); }

Create a thread, which starts downloading an 

image from a remote web site. Once it is done, 

make an instance of ImageImpl, assigns it to 

“image” and call image.draw().

extent = …

image = null;

fetchImage(…);

Client code (browser):

Image img = new ImageProxy(…);

img.draw();

0..1

What’s the Point?
• Separate bounding box placement (lazy image 

loading) and image rendering.
– Make the two concerns independent with each 

other
• Separation of concerns to improve maintainability 

8

<<interface>>

Image

ImageProxy ImageImpl
imageLazy image loading Image rendering

0..1



• Separation of concerns improves maintainability 

• When a change is made on bounding box 
placement, you can leave image rendering as it is. 
– The look-and-feel of a bounding box may change.
– Concurrency policy may change. 

• When a change is made on image rendering, you 
can leave bounding box placement as it is. 
– New image formats may be introduced. 
– Image rendering algorithms may be upgraded.    

9 10

<<interface>>

Image

ImageProxy ImageImpl

+draw()

+getExtent()

+ImageProxy()
+draw()
+getExtent()
-drawBBox()
-fetchImage()

image

0..1
- extent

+draw()
+getExtent()

extent

Proxy

Image
rendering

This part is hidden 

from client code.

Client code (browser):

Image img = new ImageProxy(…);

img.draw();

• Proxy can hide image rendering from its client (browser).
– The client uses (or faces) ImageProxy, not ImageImpl. 

– When a change is made on image rendering, you don’t have 
to change client code. 

• New image formats may be introduced. 
• Rendering algorithms may be

upgraded.

ImageImpl

+draw()
+draw2()
+getExtent()

extent

Supporting a New Rendering Algorithm

1111

<<interface>>

Image

ImageProxy

draw()

getExtent()

ImageProxy(…)
draw()
drawBBox()
getExtent()
fetchImage()

image
extent

This part is hidden 

from client code.

if(image == null){

drawBBox( getExtent() );

} else {

image.draw2();

//  image.draw(); 

}

Client code (browser):

Image img = new ImageProxy(…);

img.draw();

0..1

+draw()

ImageImpl

+draw()
+getExtent()

extent

1212

<<interface>>

Image

ImageProxy

draw()

getExtent()

ImageProxy(…)
draw()
drawBBox()
getExtent()
fetchImage()

image
extent

This part is hidden 

from client code.

if(image == null){

drawBBox( getExtent() );

} else {

image.draw();

}
EfficientImageImpl

Create a thread, which starts downloading an 

image from a remote web site. Once it is done, 

make an instance of EfficientImageImpl, assigns it 

to “image” and call image.draw().

Client code (browser):

Image img = new ImageProxy(…);

img.draw();

0..1



13

Supporting Multiple Image Formats
<<interface>>

Image

ImageProxy ImageImpl

draw()

getExtent()

ImageProxy(…)
draw()
drawBBox()
getExtent()
fetchImage()

image
extent

draw()
getExtent()

extent

Create a thread, which starts downloading an image

from a remote web site. Once it is done, make an 

instance of JpegImage or PngImage, and assigns it to 

“image” and call image.draw().

JpegImage

This part is hidden 

from client code.

Client code (browser):

Image img = new ImageProxy(…);

img.draw();

0..1

PngImage

Two Possible Design Improvements 

• Client code
– Doesn’t have to know the details about image rendering

– Does need to know about ImageProxy (i.e., need to know that 
Proxy is used to draw images).

– Actually doesn’t have to know whether or not Proxy is used (i.e., 
whether or not lazy image loading is enabled).

• Let’s separate (decouple) ImageProxy and its client. 14

<<interface>>

Image

ImageProxy

+draw()

+getExtent()

Client code (browser):

Image img = new ImageProxy(…);
img.draw();

Image rendering part is 

hidden from client code.

• ImageProxy
– Now needs to know what image formats the browser supports. 

– Actually doesn’t have to (want to) know that. 
• Let’s separate (decouple) ImageProxy from the choice of image 

formats  
15

ImageProxy ImageImpl

ImageProxy(…)
draw()
drawBBox()
getExtent()
fetchImage()

image
extent

draw()
getExtent()

extent

Create a thread, which starts downloading an image

from a remote web site. Once it is done, make an 

instance of JpegImage or PngImage, and assigns it to 

“image” and image.draw(). A conditional comes here.

JpegImage

0..1

PngImage

One Step Further with Static Factory Method

16

ImageProxy ImageImpl
ImageProxy(img:ImageImpl,…)
draw()
drawBBox()
getExtent()
fetchImage(img:ImageImpl)

image

0..1

draw()
getExtent()

Create a thread, which starts downloading an image

from a remote web site. Once it is done, assigns “img” to 

“image” and call image.draw(). No conditional blocks 
come here. ImageProxy is independent from image 
format choices and rendering algorithms. 

JpegImage PngImage

Image

-Image()
+draw()
+getExtent()
+createJpegImage(…): Image

+createPngImage(…): Image

-extent
Client code (browser):

Image img =

Image.createJpgImage(”…jpg”, …);

img.draw();

Client no longer need to 
face ImageProxy. It faces Image now.

new ImageProxy(

newJpegImage(…),

…); }

extent = …

image = null;

fetchImage(img);



17

ImageProxy ImageImpl
ImageProxy(img:ImageImpl,…)
draw()
drawBBox()
getExtent()
fetchImage()

image draw()
getExtent()

JpegImage
This part is now hidden from client code.

Client code doesn’t have to know the details about

image loading and image rendering. 

0..1

PngImage

Image

-Image()
+draw()
+getExtent()
+createJpegImage(…): Image

+createPngImage(…): Image

-extent new ImageProxy(

newJpegImage(…),

…); }

Client code (browser):

Image img =

Image.createJpgImage(”…jpg”, …);

img.draw();

Client no longer need to 
face ImageProxy. It faces Image now.

What if Everything is Integrated
in a Single Class?

18

Image

Image()
draw()
getExtent()
drawBBox()
getExtent()
fetchImage()
drawJpeg()

extent
downloaded: boolean

Obtained from a HTML file

(e.g. width=“100” height=“50”)

Or, the default extent is used.

if(!downloaded){

drawBBox( getExtent() );

} else {

if(jpeg is requested){

drawJpeg();

}

…

}

Create a thread, which starts downloading an 

image from a remote web site. Once it is done, 

call draw().

downloaded=false;

extent = …

fetchImage(…);

Client code (browser): 

Image img = new Image(…);

img.draw();

Image loading, image formats and image rendering are all mixed up and tangled

in a single class, which will not be maintainable. 

Better design strategy: Separation of concerns (loosely-coupled design)

Face Detection in Pictures

19

• Suppose you are implementing an app to 
organize, edit and analyze pictures.
– e.g., Photos from Apple

– The app loads each raw picture and
then superimposes a rectangle on a
human face by (dynamically) calling
an external face detection/recognition
API.

• e.g., APIs from Microsoft, Google, 
Facebook, etc. 

• Some delay is expected to receive a face detection 
result from an external API.
– The user is not patient enough to keep

watching a blank app window until
receiving a detection result. 

• Lazy loading of detection results
– Show the user a raw picture first. 
– Call a face detection API in the background
– Receive a detection result. 
– Replace the raw picture with a

superimposed one, which contains
a detection result. 

20



21

<<interface>>

Picture

RawPicture SuperimposedPicture

+getPath():...

+draw()

+RawPicture(…)
+getPath():…
+draw()
-drawRawImage(…)
-detectFaces(…) 

superimposed
=null

- path:…

+SuperimposedPicture(
faces:…, …)

+getPath():…
+draw()
+getFaces: LinkedList<Face>

- path:…

Proxy Class
Face

0..*   faces

- faceId
- faceRectangle
- faceAttributes
- faceLandmarks

Client code (app):

RawPicture pic = new RawPicture(…);

pic.draw();

0..1

22

<<interface>>

Picture

RawPicture SuperimposedPicture

+getPath():...

+draw()

+RawPicture(…)
+getPath():…
+draw()
-drawRawImage(…) 
-detectFaces(…)

superimposed
=null

0..1
- path:…

+SuperimposedPicture(
faces:…, …)

+getPath():…
+draw()
+getFaces: LinkedList<Face>

- path:…

Face
0..*   faces

- faceId
- faceRectangle
- faceAttributes
- faceLandmarks

Client code (app):

RawPicture pic = new RawPicture(…);

pic.draw();

if(superimposed == null){

drawRawImage(…);

} else {

superimposed.draw(); }

Create a thread, which calls an external API. 

Instantiate SuperimposedPicture and Face once 

the API returns a detection result. Call draw() on the 

instance of SuperimposedPicture. 

path = …

detectFaces(…);

Separation of Concerns
• Lazy loading of face detection results

– How to display raw pictures
– How to call an external API and receive a detection 

result

• Rendering of superimposed pictures 
– How to show face contours
– What other detection results to display

• e.g., age, gender, pupil locations, smiling or not, emotion 
(e.g. happy, angry, sad or surprised)

24

Further Potential Improvements
• Lazy loading of detection results is tightly 

coupled with client
– You can consider further design extensions that we 

saw in the previous example. 
• Introducing static factory method(s) in Picture. 

• An API call for face detection is embedded (or 
hard-coded) in RawPicture. 
– The choice of an external API might change in the 

near future. 

25



Another Example: Proxies of Files and 
Directories in File Systems

• Let’s add symbolic links in addition to files and directories
– a.k.a. alias (Mac), shortcut (Windows)

> ln -s <destination path> <link name/path>

• A link acts as a proxy of a directory or file. 
• Let’s use the Proxy design pattern. 

26

children

parent

0..*

0..1
File

FSElement
-name
…

Directory

• A link acts as a proxy of a directory or file.
– A link can act as a proxy of another link too.  

27

File

FSElement
-name
…

Directory Link

target
1

children

parent

0..*

0..1

home: Directory

linkToHome: Link

target

Test.java: File

linkToTestJavaFile: Link

target

28

File

FSElement
name
…

Directory

Link
target
1LinkableFSElement

children

parent

0..*

0..1

HW 7: Implement This

29

Directory

children

parent

0..*

0..1

FSElement

+FSElement(parent: Directory, 
name, size, creationTime)

+getSize(): int
Other getters and setters
+isDirectory(): Boolean
…

File

- name: String
- size: int
- creationTime: LocalDateTime

…

<<Singleton>>
FileSystem

rootDirs
0..*

…

File size.  0 for a directory and a link

return this.size;

Link

target
1

+Link(parent, name, size, creationTime,
target: FSElement)

…



30

c: File

Apps: Directory

root: Directory

pictures: Directory

home: Directory

x: File

a: File b: File

bin: Directory

y: File

e: Linkd: Link

• Use this tree structure as a test fixture for your test 
cases. 
– Assign values to data fields (size, etc) as you like. 


