
A Novel Matching Theory-Based Framework for
Computation Offloading in Device-to-Device

Communication
Dheeraj Mittal∗, Udit Narayana Kar†, Debarshi Kumar Sanyal‡

∗†‡School of Computer Engineering, KIIT University, Bhubaneswar, Odisha – 751024, INDIA
Email: ∗dheeraj.mittal0123@gmail.com, †uditnarayankar@gmail.com,

‡debarshisanyal@gmail.com

Abstract—The increasing demand for multimedia mobile ap-
plications creates challenges for smartphones that have low
memory or slow processor. In this paper, we explore how local
cooperation among the devices can help alleviate this problem to
some extent. Local cooperation can be achieved through device-
to-device communication which is expected to be a significant
feature of next generation cellular networks. The cooperation
can be achieved by having smartphones with insufficient re-
sources offload their jobs to neighboring smartphones with higher
computational capability. We model it as a stable matching
problem. We also propose a novel flexible framework and simple
distributed algorithms to pair mobile devices of heterogeneous
capabilities.

Index Terms—Computation offloading, Device-to-device com-
munication, Cellular network, Matching, Gale-Shapley algo-
rithm, Smartphone computing

I. INTRODUCTION

Recent times have witnessed tremendous growth in mobile
subscriber base. This is primarily driven by the emergence
of smartphones together with high data rates, mobile Inter-
net and multifarious mobile applications. But this was not
accompanied by a similar stellar improvement in battery
technology. Thus, mobile devices that run computation-heavy
tasks or make too much use of the user interface quickly
drain their power. A common feature of the mobile phone user
community is the heterogeneity of the devices they use. While
some of them possess high-end CPU or large memory, others
are seriously resource-constrained. For example, a low-priced
Swipe Elite 2 smartphone has 1 GB RAM and a 1.3 GHz quad-
core processor [1] while expensive Samsung Galaxy S8 Plus
smartphones feature 4 GB RAM and octa-core (2.3 GHz Quad
+ 1.7 GHz Quad) application processors [2]. Many software
applications cannot run comfortably on resource-constrained
smartphones. A natural question is, can users in such a diverse
community cooperate so that the less capable devices may
utilize the potential of more capable ones?

We believe the emerging device-to-device (D2D) communi-
cation technology can be a promising paradigm to address this
issue in 4G and beyond 4G networks [3]. D2D communication
enables direct communication between two mobile devices in
proximity without traversing the base station (BS) and the

core network. The BS may, however, exercise some control on
the management of D2D sessions. D2D communication may
use license-free spectrum (like Wi-Fi) or the licensed cellular
spectrum (like LTE networks). In the second case, the mobile
operator may reserve a part of the spectrum for D2D users,
or simply allow the D2D users to exploit unused portions of
the spectrum opportunistically. It leads to greater spectrum
efficiency, higher throughput and lower end-to-end delay. It has
potentially many applications in public safety systems, local
data dissemination and range extension of cellular networks.
Recently, D2D communication in cellular networks has drawn
much attention from both industry and academia. Fig. 1 shows
the basic architecture of D2D communication.

UE1

UE2

UE3Network Control

BS

Cellular

Communication

D
2
D

C
o

m
m

u
n

ic
a
tio

n

Fig. 1. D2D communication

D2D communication can be used by smartphones to offload
part of their tasks to other smartphones in their vicinity (e.g.,
in an office room or in a bus). This cooperative interaction may
prove to be a boon for resource-constrained devices. Thus, the
problem becomes one of pairing resource-rich and resource-
constrained devices for effective computation offloading. We
model it as a stable matching (or stable marriage) problem
and adapt the well-known Gale-Shapley algorithm [4] to solve
it. This algorithm is one of the cornerstones of matching
theory which is concerned with generation of stable allocations
of goods among consumers especially when the goods are
heterogeneous, indivisible and of limited quantity [5], [6]. We
limit ourselves to two-sided matching [7] although the theory
encompasses various other possibilities.

978-1-5386-4318-1/17/$31.00 ©2017 IEEE

Our solution is presented in the form of a generic framework
that can be augmented and enriched in different ways. For
example, one may like to award incentives to a resource-
rich device to act as surrogate. A straightforward means is to
stipulate that its service will be charged, i.e., devices offloading
tasks to surrogates must pay the latter. The amount a server
charges or alternatively, the amount a client is willing to pay
may be easily incorporated in our logic to decide the matched
pairs. More specifically, participants can collect important
characteristics of their potential partners and rank them a
priori. This ranked order (or preference list) maintained by
a device is an input to our algorithm. Thus, the proposed
framework is powerful enough to model several scenarios
while remaining a simple and intuitive one. We show through
measurements (taken with an Android app we developed) that
the time consumed by the same computation varies widely
across smartphone brands and hence, our scheme can lead to
appreciable benefits to users.

II. RELATED WORK

A lot of research has gone into analysis and design of tech-
niques for offloading data and tasks in mobile computing [8].
Mobiles can offload tasks to other mobiles or more powerful
servers in the cloud and thus, augment their capabilities with
external resources. This helps devices overcome their limita-
tions in terms of computation time, memory consumption and
energy. The applications to be offloaded should be adaptively
split and suitable parts should be transmitted to remote devices.
Such applications are generally called elastic mobile applica-
tions. The offloading software must function transparently to
give developers the illusion as if they are programming on
more powerful mobile devices. Researchers have formulated
many guidelines to take offloading decisions that (1) improve
performance and (2) save energy. The Cuckoo framework
allows users to develop simplified smartphone applications that
support dynamic runtime system that can decide at runtime
whether a part of the application should be run locally or
offloaded to a remote cloud server [9]. The seminal MAUI
architecture computes the energy savings possible by fine-
grained code offload to a cloud server and accordingly identi-
fies and migrates code dynamically to remote machines [10].
For different sensors in the smartphones different applications
are used. Understanding remote execution of applications and
writing code that allows efficient offloading are a challenge
to application developers. The Android-based DPartner tool
automatically analyzes an application bytecode for discovering
the parts of an app that are worth offloading, then rewrites the
bytecode to support on-demand offloading [11]. The authors
in [12] create a software clone of a mobile device in the cloud.
They propose two new techniques, off-clone and back-clone.
Off-clone performs computational offloading to the clone on
the fly and back-clone restores user’s data and apps from the
clone. They analyze the energy and communication overhead
of synchronizing the clones.

The above works mainly focus on offload from mobiles to
servers in the cloud. D2D communication in LTE-Advanced

opens up a new facet to offloading that can occur exclusively
among peer mobile devices. In content delivery networks,
users can use D2D links to offload traffic. Xu et al. assume that
social relationships among users indicate similarity of their
preferences for content [13]. They attempt to match content
providers with content consumers as well as match D2D
links (between the providers and consumers) with spectrum
resources. Cao et al. advance a framework for joint data
and task offloading from one mobile device to another using
D2D links [14]. They posit that a device (relay) which has
sufficient data usage capacity but is running low on battery
should be able to offload the task and data to a nearby device
(surrogate) that has sufficient energy budget but low data usage
capacity. They propose a matching-based and a game-theory-
based solution to form D2D pairs that would participate in
the offloading. The first solution is a centralized algorithm.
It involves constructing a weighted bipartite graph where the
relays and the surrogates form the disjoint vertex sets and the
weighted average of the costs of data and task offloading from
a relay to a surrogate forms the weight of the connecting edge
between them. They apply the Hungarian matching algorithm
[15] to find a matching that has the minimum sum of edge
weights. The second is a faster distributed algorithm based on
coalitional games. Matching algorithms have also been applied
in D2D communication for other purposes like mode selection
[16] and resource allocation [17], [18]. The reader may refer to
[19], [20] for tutorials on matching theory and its applications
in wireless networks.

Our approach has goals different from the previous ones.
It is closest in motivation to [14] but unlike it, we intend
to opportunistically exploit the heterogeneity in quality of
smartphones distributed among neighboring users. Toward this
end, we propose a stable-matching algorithm. It is a generic
framework where desirable preference lists can be easily
plugged in.

III. PROBLEM STATEMENT

Current times have seen the explosion of smartphones
although it is clearly observable that not all users have high-
end varieties. Hence, the computational powers of different
users vary to a large extent. So it would be useful for
resource-constrained devices (clients) to utilize the capabilities
of their resource-rich peers (servers). We intend to develop a
framework where a mobile user can easily offload compu-
tation to a suitable smartphone in his proximity using D2D
communication. Naturally the number of clients and servers
may be unequal. A client may find some servers unacceptable
(e.g., because they do not have the desired computational
capability), and a server may not like to work for some clients
(e.g., because their past history is not commendable). We
assume a device acts as either a client or a server but never
both at the same time. Regarding the wireless channel, we
assume communication is through some form of TDMA; time
is slotted and devices are synchronized on slot boundaries.
Further, a device cannot receive and transmit at the same

time and multiple concurrent transmissions are destroyed
completely.

Formally, assume the set of resource-constrained devices is
D1 and the set of resource-rich devices is D2 and the sets are
finite and non-overlapping. Number of elements in D1 and D2

may not be same. Each device in each of the above sets has a
preference list which is defined as a strict ordering of a subset
of elements of the other set. Thus, preference lists may be
incomplete. A matching M is defined as a set of ordered pairs
{< d1, d2 >: d1 ∈ D1 ∧ d2 ∈ D2} such that each d1 ∈ D1

appears in at most one pair in M and each d2 ∈ D2 appears
in at most one pair in M . A pair < d1, d2 > is acceptable if
each member of the pair appears in the preference list of the
other. A blocking pair m is defined as a pair < d′1, d

′
2 >6∈M

such that the following 3 conditions hold simultaneously: (1)
< d′1, d

′
2 > is an acceptable pair, (2) either d′1 is unmatched

or strictly prefers d′2 to its current partner, and (3) either d′2
is unmatched or strictly prefers d′1 to its current partner. A
matching M for which there is at least one blocking pair is
unstable, otherwise it is stable. A maximum stable matching
is a stable matching with the largest possible number of pairs.
It is a natural and desirable solution. Our aim is to find a
maximum stable matching given the sets D1 and D2 and their
preference lists.

IV. PROPOSED SOLUTION

A. Background on Gale-Shapley Algorithm

1) Basic model and algorithm: The problem of pairing
clients and servers can be solved using Gale-Shapley algorithm
[4], [21]. This algorithm is typically described in the context
of marriage where there are two finite and disjoint sets, one
of n men and another of n women. Initially all members of
both sets are free and each has a preference list that contains
a strict ordering of all members of the other gender. Here
a stable matching M is a collection of pairs {< m,w >}
where m denotes a man and w denotes a woman such that
there is no blocking pair < m′, w′ >6∈ M in which both
m′ and w′ prefer each other to the partners they currently
have in M . The algorithm proceeds in stages. In each stage,
an unengaged man proposes to a woman who ranks highest
in his preference list and to whom he has not proposed yet.
If she is free, she provisionally agrees to the proposal and
pairs up with him. If she is engaged but prefers him to her
current partner, she comes out of her current engagement and
pairs up with this man. The process is repeated as long as
there is a free man who has not proposed to all women. This
algorithm always terminates, generates a stable matching in
time O(n2) and everyone gets married. In an execution of
the Gale-Shapley algorithm, the free men can propose in any
order but this is inconsequential in the sense that all executions
of the algorithm return the same stable matching. When men
propose, the stable matching returned is man-optimal, i.e.,
each man is married to the best (i.e., his highest ranked)
partner he can have in any stable matching. It is also woman-
pessimal, i.e., each woman is married to the worst (i.e., her
lowest ranked) partner she can have in any stable matching.

If instead, the women propose, the algorithm would return a
woman-optimal (and man-pessimal) stable matching.

2) Unequal numbers of men and women: Consider the
variant where the two sets have different cardinalities, say,
n men and k women [5], [22]. Not all persons can be married
now. Clearly, a blocking pair < m′, w′ >6∈ M now means
a pair in which (1) either m′ is free or strictly prefers w′ to
his current partner, and (2) w′ is free or strictly prefers m′

to her current partner. The algorithm still returns a maximum
stable matching in which all members of the smaller set are
matched and |n−k| members of the larger set are unmatched.
The larger set is partitioned into two subsets: (1) members that
have partners in all stable matchings, and (2) members that do
have partners in any stable matching.

3) Incomplete preference lists + unequal set sizes: Another
important extension of the problem is that of incomplete
preference lists where a person finds some persons of the
other gender unacceptable [5], [22]. Now a blocking pair
< m′, w′ >6∈ M must additionally obey a third property:
< m′, w′ > should be an acceptable pair, i.e., each member
of the pair must appear in the preference list of the other.
The Gale-Shapley algorithm carries over to this case with
the obvious clause that a man does not propose to a woman
he finds unacceptable and a woman rejects any proposal
from a man she finds unacceptable. As in previous cases,
the algorithm returns a maximum stable matching. Men and
women are each partitioned into two subsets: (1) those who
have partners in all stable matchings, and (2) those who do
not have partners in any stable matching.

B. Adaptation of Gale-Shapley Algorithm for Matching De-
vices

When the Gale-Shapley algorithm is adapted to the current
setting, men and women correspond to clients and servers
respectively. Our assumption that the number of clients and
the number of servers are unequal is a very reasonable one
and models reality closely since these numbers depend purely
on the local population of mobiles. A client has a technical
requirement like high CPU frequency or large memory or a
specific software (e.g., to run a video-processing program). It
may choose only those servers that possess CPU, memory and
software satisfying its requirements. Then it ranks the chosen
servers strictly. Each server also orders (possibly, a subset of)
the clients strictly, say, on the basis of the bids submitted
by the clients or the compute time required or other features
of the clients. However, we keep the issues of designing
preference lists outside the scope of this paper and simply
assume that clients and servers have their own preference lists.
The sequence of steps executed by the devices to form pairs are
shown in Algorithm 1. In every iteration, a free client proposes
to the server highest on its preference list. The server chooses
the client, irrespective of whether it is currently paired or not,
based on whether the client currently proposing is higher on
its preference list. This eventually generates a maximum stable
matching.

Input: Device sets D1 and D2 (along with their
preference lists)

Output: A stable matching M

M = φ;
Set status of all c ∈ D1 as free;
Set status of all s ∈ D2 as free;
while (there is a free client c ∈ D1 ∧ c has not proposed
to all servers in its preference list) do
s← first server (∈ D2) on c’s preference list to
whom c has not proposed yet;

if c is present in preference list of s then
if s is free then

M ←M ∪ < c, s > /* s accepts c */;
else

/* some pair < c′, s > already exists in M */
if s prefers c to c′ then
M ←M \ < c′, s > /* s rejects c′ */;
M ←M ∪ < c, s > /* s accepts c */;

else
/* s rejects c */

end
end

else
/* s rejects c */

end
end
return M ;

Algorithm 1: Matching algorithm for clients and servers

C. Proposed Framework for Computation Offloading

We propose a computation offloading framework that has
three consecutive phases. We assume clients and servers do
not enter or exit the system during the phases.

In the first phase, essential information for formation of
preference lists is disseminated in the network. For example,
servers may announce their capabilities and clients their bids,
etc. We intend the next phase to run a distributed version
of Algorithm 1 faithful to our channel model. Although the
devices in D1 are not required to propose in a specific order,
they must follow some sequential order since our channel
model does not allow concurrent transmissions. So a central
controller (say, base station) must prepare a fixed transmission
schedule π for use by devices in D1 in phase 2. There are
at most T = |D1||D2| iterations - each iteration having a
proposal from a device d1 ∈ D1 to a device d2 ∈ D2, an
accept/reject message from d2 to d1 and possibly, a reject
message from d2 to some other engaged node in D1. (More
precisely, if pi is the size of the preference list of device
di ∈ D1, the number of iterations is no more than

∑|D1|
i=1 pi.)

We can encode the receiver information in the payload and
merge the last two message types into a broadcast message.
This means each request time slot is followed by a slot for
(broadcast) acknowledgement from D2. Clearly at most T
slot pairs (i.e., pair of request and response slots) are needed.

The base station can generate a transmission schedule π by
randomly assigning |D2| specific slots (or exactly pi slots if
pi is known to it) to each device di ∈ D1. This schedule is
broadcast to the devices in D1 as the last operation of the first
phase.

In the second phase, clients send requests to servers and
servers respond to them by accepting or rejecting the requests.
Clients can propose in the request slot of each slot pair using
Algorithm 2. In other words, a client checks if it is scheduled
to transmit in that slot. If so and it is free and has not
proposed to all servers in its preference list, it transmits to its
most preferred server to which it has not proposed yet. In a
response slot, a server responds using the logic in Algorithm
3. The procedure sendMsg takes a sender_name
followed by destination_count followed by
<destination_name, PROPOSE|ACCEPT|REJECT>
tuples occurring destination_count times. If
destination_count is 1, a unicast message is sent
to the destination. Otherwise a broadcast message is sent
with the payload indicating the different destinations and the
corresponding message bodies. Since a server can revise its
decision by coming out of its current engagement and pairing
with another device, a client can know its surrogate only at
the end of this phase.

Input: Transmission schedule π of a client
Output: The client either sends PROPOSE message to a

potential server or no message at all

c← this device;
if c is scheduled to transmit in this slot then

if c is free and c has not proposed to all servers in
its preference list then
s← first server (∈ D2) on c’s preference list to
whom c has not proposed yet;

sendMsg(c, 1, s, PROPOSE);
else

/* c is engaged or has exhausted its preference
list */

end
else

/* c is not scheduled to transmit in this slot */
end

Algorithm 2: Algorithm used by a client in each request slot

In the third and final phase, each matched client sends its
computational task and data to its corresponding server. The
latter executes it and returns the results.

It is clear that the last two phases comprise completely
distributed algorithms executed by the devices. A sequence
of message flows corresponding to the proposed algorithm is
shown in Fig. 2.

V. IMPLEMENTATION AND MEASUREMENTS

We developed an Android app using Google Firebase [23]
platform to offload computation from a smartphone to another
nearby smartphone. Our goal is to find out whether computa-
tion times vary appreciably across different grades of mobiles.

Input: Message queue Q of a server
Output: The server either sends message to one or more

clients or no message at all

s← this device;
if Q not empty then

m← message from client c in Q;
if c is present in preference list of s then

if s is free then
sendMsg(s, 1, c, ACCEPT);

else
/* s is currently paired with c′ */
if s prefers c to c′ then

/* Accept c and reject current partner c′ */
sendMsg(s, 2, c, ACCEPT, c′, REJECT);

else
sendMsg(s, 1, c, REJECT);

end
end

else
sendMsg(s, 1, c, REJECT);

end
else

/* Nothing to do */
end

Algorithm 3: Algorithm used by a server in each response
slot

The app uses Wi-Fi to connect since D2D communication
support is not available in our systems. A snapshot of the
system interface is shown in Fig. 3. The leftmost screen shows
how a user profile is set up. It is used to inform the app whether
the phone will serve as a server or a client. If it is a client, it
has to specify a bid value too. We assume each client offers
the same bid to all servers. The Proceed button is used to
complete the registration. The details are uploaded to Firebase
Realtime Database. The Search button is used to search for
a specific device. As the next snapshot in Fig. 3 shows, the list
of available servers displayed to a client contains the details
of each server in terms of its identifier, its total memory and
its available memory. Clients interact with servers to form
pairs. The screenshots for this interaction are not shown. The
rightmost snapshot shows the interface for a client to send data
to the server to which it paired up. The same interface is also
used by a client to receive results from the server. Here, we
assume the program / task to be executed is already available
with the server.

We experimented with Android smartphones from three
different vendors. The device specifications are shown in Table
I. Here, device P1 is the most high-end device while device P3
is the most low-end device as per the device specifications. We
implemented two programs: (1) a primality checker that takes
an input integer and tests if it is prime, and (2) a palindrome
checker that takes a bit-string and checks if the string reads the
same backwards and forwards. The results of running the same
program on different mobiles (chosen as servers) are shown

Client Server 1 Server 2

PROPOSE

REJECT

Task Execution

PROPOSE

ACCEPT

Task and Data

Results

Fig. 2. Message flow diagram showing interactions among devices for
computation offloading

Fig. 3. Mobile app to offload computation: (From left) Initial interface to set
up user profile, List of servers shown to a client, Interface to send data to and
receive result from server

in Tables II, III. It can be observed that the time taken by the
LG Nexus 5 mobile is less than that taken by the Karbonn A6
mobile which is less than the time consumed by Idea ID-920
mobile. This shows that computation offloading can result in
faster processing.

TABLE I
DEVICE SPECIFICATIONS

Device ID Brand Processor RAM
P1 LG Nexus 5 2.3 GHz

(quad-core)
2 GB

P2 Karbonn A6 1 GHz
(single-core)

512 MB

P3 Idea ID-920 1 GHz
(single-core)

256 MB

TABLE II
TIME IN milliseconds TO RUN PRIMALITY CHECKER ON DIFFERENT
SMARTPHONES. EXPERIMENT WITH EACH INPUT INTEGER IS DONE

THRICE. THE AVERAGE VALUES ARE ALSO SHOWN.

Input integer Time on P1 Time on P2 Time on P3
5 1.7286 1.8632 2.3081
5 1.7702 2.1558 1.9752
5 1.8425 1.9383 2.2232

(Avg. time ⇒) 1.7804 1.9858 2.1688
5555 2.2941 2.0157 2.3350
5555 2.1703 2.3587 2.4415
5555 2.2109 2.4782 2.5625

(Avg. time ⇒) 2.2251 2.2842 2.44633
555555555 303.6833 316.8265 326.7898
555555555 316.2618 321.5064 336.7539
555555555 325.4091 309.5345 340.3068

(Avg. time ⇒) 315.1181 315.9558 334.6168

TABLE III
TIME IN milliseconds TO RUN PALINDROME CHECKER ON DIFFERENT

SMARTPHONES. EXPERIMENT WITH EACH STRING IS DONE THRICE. THE
AVERAGE VALUES ARE ALSO SHOWN.

Input string Time on P1 Time on P2 Time on P3
1010 1.8861 1.9060 2.3896
1010 1.9296 2.3833 2.2263
1010 2.0959 2.6472 2.3325

(Avg. time ⇒) 1.9706 2.3122 2.3162
101011 1.5483 2.305 2.1240
101011 1.6539 1.9345 1.9333
101011 1.8112 2.2363 2.4468

(Avg. time ⇒) 1.6712 2.1586 2.1681

VI. CONCLUSION AND FUTURE WORK

We proposed a framework for pairing mobile devices to
enable computation offloading in a scenario where a mix of
high-end and low-end devices are present. Clients and servers
maintain preference lists and choose their partners using a
match-making algorithm. Our simulations demonstrate that
computation times can vary widely across smartphone brands.
Therefore, cooperative task execution can be really useful to
low-end mobiles.

We have identified several directions for future research. In
particular, we aim to consider methods to generate preference
lists, consider preference lists that are partial orders over
mobiles of the other set, consider the possibility of a server
accepting multiple clients or a client offloading to multiple
servers, investigate link volatility at a smaller time scale,
design algorithms to place bids intelligently, and measure
the performance of the algorithm in a large population of
heterogeneous smartphones. We believe a full-fledged mobile
app based on our framework and incorporating the above
aspects can be of great practical utility.

REFERENCES

[1] Swipe, “Smartphone specifications,” http://justswipe.com/the-
product/smartphones/, (Accessed on 16/7/2017).

[2] Samsung, “Galaxy s8 / s8+ specifications,”
http://www.samsung.com/global/galaxy/galaxy-s8/specs/, (Accessed
on 16/7/2017).

[3] L. Wang and H. Tang, Device-to-device communications in cellular
networks, ser. SpringerBriefs in Electrical and Computer Engineering.
Springer, 2016.

[4] D. Gale and L. S. Shapley, “College admissions and the stability of
marriage,” The American Mathematical Monthly, vol. 69, no. 1, pp. 9–
15, 1962.

[5] M. Niederle, A. E. Roth, and T. Sönmez, “Matching and market design,”
in The New Palgrave Dictionary of Economics, S. N. Durlauf and L. E.
Blume, Eds. Basingstoke: Palgrave Macmillan, 2008.

[6] A. Abdulkadiroglu and T. Sönmez, “Matching markets: theory and
practice,” Advances in Economics and Econometrics, vol. 1, pp. 3–47,
2013.

[7] D. Gale, “The two-sided matching problem: origin, development and
current issues,” International Game Theory Review, vol. 3, no. 2 & 3,
pp. 237–252, 2001.

[8] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of computation
offloading for mobile systems,” Mobile Networks and Applications,
vol. 18, no. 1, pp. 129–140, 2013.

[9] R. Kemp, N. Palmer, T. Kielmann, and H. E. Bal, “Cuckoo: a computa-
tion offloading framework for smartphones,” in Proceedings of the 2nd
International ICST Conference on Mobile Computing, Applications, and
Services (MobiCASE). Springer, 2010, pp. 59–79.

[10] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer with
code offload,” in Proceedings of the 8th International Conference on
Mobile Systems, Applications, and Services (MobiSys). ACM, 2010,
pp. 49–62.

[11] Y. Zhang, G. Huang, X. Liu, W. Zhang, H. Mei, and S. Yang, “Refactor-
ing android java code for on-demand computation offloading,” in ACM
SIGPLAN Notices, vol. 47, no. 10. ACM, 2012, pp. 233–248.

[12] M. V. Barbera, S. Kosta, A. Mei, and J. Stefa, “To offload or not to
offload? the bandwidth and energy costs of mobile cloud computing,”
in Proceedings of the 32nd Annual IEEE International Conference on
Computer Communications (INFOCOM). IEEE, 2013, pp. 1285–1293.

[13] C. Xu, C. Gao, Z. Zhou, Z. Chang, and Y. Jia, “Social network-based
content delivery in device-to-device underlay cellular networks using
matching theory,” IEEE Access, vol. 5, pp. 924–937, 2017.

[14] Y. Cao, C. Long, T. Jiang, and S. Mao, “Share communication and com-
putation resources on mobile devices: a social awareness perspective,”
IEEE Wireless Communications, vol. 23, no. 4, pp. 52–59, 2016.

[15] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval
Research Logistics (NRL), vol. 2, no. 1-2, pp. 83–97, 1955.

[16] Y. Cao, T. Jiang, and C. Wang, “Cooperative device-to-device commu-
nications in cellular networks,” IEEE Wireless Communications, vol. 22,
no. 3, pp. 124–129, 2015.

[17] O. Semiari, W. Saad, S. Valentin, M. Bennis, and H. V. Poor, “Context-
aware small cell networks: how social metrics improve wireless resource
allocation,” IEEE Transactions on Wireless Communications, vol. 14,
no. 11, pp. 5927–5940, 2015.

[18] Z. Zhou, K. Ota, M. Dong, and C. Xu, “Energy-efficient matching for
resource allocation in d2d enabled cellular networks,” IEEE Transactions
on Vehicular Technology, vol. 66, no. 6, pp. 5256–5268, 2017.

[19] Y. Gu, W. Saad, M. Bennis, M. Debbah, and Z. Han, “Matching theory
for future wireless networks: fundamentals and applications,” IEEE
Communications Magazine, vol. 53, no. 5, pp. 52–59, 2015.

[20] Z. Han, Y. Gu, and W. Saad, Matching theory for wireless networks.
Springer, 2017.

[21] D. Gusfield and R. W. Irving, The stable marriage problem: structure
and algorithms. MIT press, 1989.

[22] K. Wayne. Lectures on cos 423: theory of algorithms.
http://www.cs.princeton.edu/∼wayne/cs423/lectures/intro-marriage-
4up.pdf. (Accessed on 16/7/2017).

[23] Google, “Firebase,” https://firebase.google.com/, (Accessed on
16/7/2017).

