
FE-520 Assignment 3

Zhiyuan Yao, Zhi Chen

Fall 2022

Submission Requirement:
For all the problems in this assignment you need to design and use Python 3, output
and present the results in a nice format.

Please submit a Python script (.py) file and a document file (.pdf/.docx/...).

You are strongly encouraged to write comment for your code, because it is a con-
vention to have your code documented all the time. In your python file, you need
contain both function and test part of function. Python script must be a ‘.py’ script,
Jupyter notebook ‘.ipynb is not allowed.

Do NOT copy and paste from others, all homework will be firstly checked by pla-
giarism detection tool.

1 (50 pts) 2D Random Walk
Implement a 2D random walk class. 2D random walk is a process that a point (with
coordinates x and y) walks randomly on a 2D axis. For every time step t = 1, 2, · · · ,
you flip a fair coin twice and obtain the result C1 and C2, C1 and C2 could be head (H)
or tail (T). Then, you move the points from (xt−1, yt−1) to (xt, yt) using the following
rule:

xt =

 xt−1 + 1, C1 = H,
xt−1 − 1, C1 = T,

yt =

 yt−1 + 1, C2 = H,
yt−1 − 1, C2 = T,

Initial state by default is (x0, y0) = (0, 0).
Each path is represented as a a list of 2-element tuples. E.g., [(0,0), (0,1), (-1,1),

(-1, 0), ...]
Create a Python module called Random Walk.py. You implement this 2D random

walk class in this file. Name your the class as Random Walk 2D. The initializer should
one parameter init state. The class should have one method (generate(num path,

1

num step)) to output a list of paths, where num path, num step is respectively the
number of paths and the length of each path you want to generate. The generated path
should always start from the initial state.

As an example, your class should work with the following calls:

if __name__ == "__main__":

rw = Random_Walk_2D(init_state = [0,0])

rw.generate(num_path = 2, num_step = 3)

returns:

[[(0,0), (0,1), (-1,1)],

[(0,0), (1,0), (0,0)]]

random results,

your results could be different from this

1. (30 pts) Implement the aforementioned class.

2. (10 pts) Create a script main.py, import and test your class with the following
input:

if __name__ == "__main__":

from Random_Walk import Random_Walk_2D

rw = Random_Walk_2D(init_state = [5,5])

rw.generate(num_path = 10, num_step = 100)

rw.generate(num_path = 5, num_step = 50)

3. (10 pts) Optimize your code using Numpy, to generate the paths in parallel. Hint:
do not generate each path one-by-one. Use the vectorization operation of numpy
to generate them. You earn the points if you have done so.

2

2.1 (10 pts) Build A Stock Class
Classes provide a means of bundling data and functionality together. Creating a new
class creates a new type of object, allowing new instances of that type to be made.

In this practice, we are going to build a class for stock and define methods to per-
form analysis. Specifically, the ”Stock” has the following attributes: ”ticker”, ”open price”,
”close price”, ”volume”, ”shares”. Stock objects also have methods: calculate daily return(),
calculate cost(). Please implement these two methods. (Note: assume we buy the stock
the moment the market opens and hold the stock.)

After creating the Stock class, please create a list of instances using the information
from the following portfolio list.

(Note: you are required to use just one line of code to implement this step.)
port f olio = [
{′ticker′ :′ IBM′,′ shares′ : 100,′ open price′ : 91.1, ”close price” : 103,′ volume′ :

100},

2

{′ticker′ :′ AAPL′,′ shares′ : 50,′ open price′ : 543.22, ”close price” : 653.1,′ volume′ :
200},

{′ticker′ :′ FB′,′ shares′ : 200,′ open price′ : 21.09, ”close price” : 25.2,′ volume′ :
150},

{′ticker′ :′ HPQ′,′ shares′ : 35,′ open price′ : 31.75, ”close price” : 43.89,′ volume′ :
120},

{′ticker′ :′ YHOO′,′ shares′ : 45,′ open price′ : 16.35, ”close price” : 17.23,′ volume′ :
87},

{′ticker′ :′ ACME′,′ shares′ : 75,′ open price′ : 115.65, ”close price” :
120.3,′ volume′ : 86}]

2.2 (20 pts) Analyze The Portfolio
In the previous step, we create a list that contains several stocks. We can consider it
as a ”portfolio”. In this practice, we are going to calculate the basic statistics of the
portfolio and do some basic analysis.

1. Use one line of code to calculate the total shares in the portfolio

2. Use one line of code to calculate the total cost in the portfolio

3. Use one line of code to build a list based on the portfolio(i.e., the list of instances
we obtain in the above). Each element of the list is a dictionary. Each dictionary
have two key-values pairs for each stock in the portfolio. The keys are ticker and
open price. The value are the corresponding ticker name and open price of each
stock. Let’s call this list ticker price list.

4. Use one line of code to sort the ticker price list based on the price.

5. Use one line of code to find the stock with largest open price in the ticker price list.

6. Use one line of code to find the highest 3 stocks in terms of close price in the
ticker price list.

(hint: we are going to use the heapq package and heapq.nlargest() method. The
parameter we can input for method: heapq.nlargest(number of largest number,
iterable, criteria)

2.3 (20 pts) Class Inheritance
1. Define an inheritance StockInfo based on the Stock class. The new attributions

for this class are default times and years. Please use super() method for initial-
ization.

2. Please define a method called StockInfo.update years(). When you call this
method, the ”years” attribute will add one to itself.

3

3. Please define a class variable called penalty threshold and let it equal to 5. (Class
variable is a variable that is shared by all instances of a class. Class vari-
ables are defined within a class but outside any of the class’s methods.) Then
override the method calculate return(). If the default time is greater than the
penalty threshold, the return will be deduct 10%.

4. Define another class called VolumeLevel with attribute volume and method de-
termine volume level(). If volume is greater than 100, then it will be classified
as high. Otherwise it will be classified as low. Make instance of VolumeLevel as
attribute of class StockInfo. Then call the method determine volume level().

5. For now when you try to print the instance of StockInfo, you will get the in-
formation of the class. Please use magic method repr () to change the output
information. When you print the instance, you will get the information of the
stock.

The format is: ticker - open price - shares.

4

	(50 pts) 2D Random Walk
	
	(10 pts) Build A Stock Class
	(20 pts) Analyze The Portfolio
	(20 pts) Class Inheritance

