

 1/4

Assignment - Particles in a box

Simulation of particles in a box

We are to construct a program that simulates a number of particles moving in a box. Such a system

can be used to simulate e.g. gas in a closed container.

The particles are confined to a unit box with the lower left corner at (0,0) and the upper right corner

at (1,1). Particle sizes are set to random values between 0.005 and 0.015 and given an initial

velocity of v0 = 0.01.

Each particle has a position, s a speed v, and a radius r.

Initially, all particles are randomly positioned in the box. Each particle has the same speed but

moves in different directions. The speed vector can be computed as, , where is a random

number in .

The particles move the distance ∆t in each timestep according to the following criteri as.

1. Decide whether any particle collides with a wall in the box (this means that the distance from the

border to the particle is less than the radius). If a collision occurs, the particle should bounce.

2. Decide whether two particles collide. If particles i och j collide, use the formula:

to update their speed. (The operation denotes dot product) Ignore the case where more than two

particles collide.

3. When all particles have been tested, they move to a new position using the formula:

 2/4

cmake_minimum_required(VERSION 3.0)

project(particles)

enable_language(Fortran)
add_executable(particles main.f90

mf_datatypes.f90 mf_utils.f90 app_utils.f90 app_data.f90
app_sim.f90 vector_operations.f90)

The time step At should be selected so that the particles don’t pass through the walls. A suitable

value is ∆t=r/(3*v0). Input to the simulation is the number of particles, initial speed, and radius.

The skeleton code for this assignment can be downloaded here:

skeleton_code.tar.gz (folder path: code/problem1)

skeleton_code.zip (windows)

Please look at the README.md in both of these examples.

 Task 1 - Fortran implementation

The implemented Fortran application should use modules for its implementation. Divide the

application into logical modules:

mf_datatypes

Definition of constants that will be used throughout the application. Constants for

selected_real_kind() and selected_int_kind() could be put in this module.

mf_utils

Utility routines for random numbers and printing matrices.

app_data

Could contain data structures and arrays used in the application. Routines for initializing,

reading/writing, and destruction of data could also be located in this module.

app_sim

This module contains the actual routines that handle the actual simulation.

app_utils

Utility routines that are used throughout the application.

vector_operations

Module not specific to the application, but contains generic reusable code.

The app prefix is just a suggestion. Replace this with something that is more suitable for your

application.

Use CMake to handle makefile generation. A sample CMakeLists.txt file is shown below:

skeleton_code.tar.gz%20%20(https:/canvas.education.lu.se/courses/19995/files/2762132/download?%20download_frd=1)%20-%20c
https://canvas.education.lu.se/courses/19995/files/2762131/download?download_frd=1
https://github.com/jonaslindemann/sese-course-public/blob/master/project/particles_in_a_box.md#task-1---fortran-implementation

 3/4

[number of particles n]
[particle size 1]

.

.

.
[particle size n]
[Number of particles, n, for timestep 1]

[x1] [y1] [z1]
.
.
.
[xn] [yn] [zn]
[Number of particles, n, for timestep 2]
[x1] [y1] [z1]
.
.
.
[xn] [yn] [zn]
[Number of particles, n, for timestep m]
[x1] [y1] [z1]

.

.

.
[xn] [yn] [zn]

add_library(applib SHARED app_defs.f90 app_utils.f90

app_data.f90 app_sim.f90 vector_operations.f90)

f2py -m app -c app_interface.f90 -I./ build -L./ build -lapplib

To aid the debugging of the Fortran code, a special Python script is provided,

particle_player_vedo.py, which can be downloaded from the course page. This script reads particle

sizes and positions from a text file and displays a visualization of the movement of particles. The file

format used is described below:

Task 2 - Create an F2PY interface for the Fortran code

In this task, the previous Fortran application will be given a Python interface using the F2PY tools.

To make it easier to use the F2PY tool, a special Fortran module will be implemented that represents

the interface to Python. This module should typically contain subroutines for driving the simulations

(check_collision,update_positions, etc).

To make it easier to wrap the Fortran code, only the interface module will be converted by the F2PY

converter. Other code will be compiled as a library separately and linked into the Python module

from the F2PY command. A library can be compiled with CMake by adding the following to the

existing CMakeList.txt file:

The python module can then be built using the following command:

https://github.com/jonaslindemann/sese-course-public/blob/master/project/particles_in_a_box.md#task-2---create-a-f2py-interface-for-the-fortran-code

 4/4

conda create -n vedo-project python=3.7

conda activate vedo-project

pip install vedo

python vedo_demo.py

When the extension module has been built, implement a python based main program that drives the

simulation.

Task 3 - Visualise particle movement using Vedo

Use the Python Vedo visualization library to visualize the particle movement for every simulation

step.

vedo (embl.es) (https://vedo.embl.es/)

To use vedo it is a good idea to create a virtual environment as it has specific python requirements

for its dependencies. An environment for vedo can be created using the following commands (vedo-

project can be changed to whatever you like):

To install vedo, activate the environment and use pip to install the package:

To verify that vedo works, the vedo_demo.py application can be run in the skeleton_code root

directory.

https://github.com/jonaslindemann/sese-course-public/blob/master/project/particles_in_a_box.md#task-3-create-a-simple-user-interface
https://vedo.embl.es/

