Economic Operation & Control of Power Systems (EE632A)

Lecture: Course Project

Dr. Swathi Battula

Assistant Professor

EED, IIT Kanpur

Objectives

Q

Provide hands-on experience on the concepts studied Provide exposure to the methods of conducting research work Encourage independent and innovative ideas Introducing academic writing

Components

Problem Formulation

Execution

Case Studies, Analysis & Insights

Reporting Outcomes

Evaluation Policy

Assignments	10
Quizzes	10
Course Project	25
Mid Sem. Exam	25
End Sem. Exam	30
Total	100

Grading is based on relative performance

Attendance is given additional 5% weightage

Plagiarism should be avoided

Evaluation of Course Project

Component	Weightage	
Problem Formulation	5	
Execution (with a simple test case)	5	
Test cases, analysis & insights	10	
Final Presentation & Report	5	
Total	25	

SCUC Objective Function

- Decision variables are z_{it} , g_{it} , y_{it} , x_{it}
- z_{it} , y_{it} , x_{it} are discrete, g_{it} is continuous

 g_{it} is the MW produced by generator *i* in period *t*, z_{it} is 1 if generator *i* is dispatched during *t*, 0 otherwise, y_{it} is 1 if generator *i* starts at beginning of period *t*, 0 otherwise, x_{it} is 1 if generator *i* shuts at beginning of period *t*, 0 otherwise,

> F_{it} is no-load cost (\$/period) of operating generator *i* in period *t*, C_{it} is prod. cost (\$/MW/period) of operating gen *i* in period *t*; S_{it} is startup cost (\$) of starting gen *i* in period *t*. H_{it} is shutdown cost (\$) of shutting gen *i* in period *t*.

Note: The contents of the slide are taken from Prof. McCalley's Lecture Notes on SCUC formulation

SCUC Problem Formulation						
$\min \sum_{\substack{t \\ Fixed(noload)Cost}} z_{it}F_{it}$	$+\underbrace{\sum_{t}\sum_{i}g_{it}C_{it}}_{ProductionCosts} +\underbrace{\sum_{t}\sum_{i}y_{it}S}_{StartupCosts}$	$t_{it} + \sum_{t} \sum_{i} x_{it}$	H_{it}			
Subject to		Shardo mee				
power balance	$\sum_{i} g_{it} = D_t = \sum_{i} d_{it}$	$\forall t$,	(2) Power balance	at each period t.		
reserve	$\sum_{i}^{t} r_{it} \ge SD_t$	$\forall t$,	(3)			
min generation	$g_{it} \ge z_{it}MIN_i$	$\forall i, t,$	(4)			
max generation	$g_{it} + r_{it} \le z_{it}MAX_i$	$\forall i, t,$	(5)	Max increase and max decrease.		
max spinning reserve	$r_{it} \leq z_{it}MAXSP_i$	$\forall i, t,$	(6)	This reflects ramp rates.		
ramp rate pos limit	$g_{it} \le g_{it-1} + MxInc_i$	$\forall i, t,$	(7)			
ramp rate neg limit	$g_{it} \ge g_{it-1} - MxDec_i$	$\forall i, t,$	(8)	Start constraint		
start if off-then-on	$z_{it} \le z_{it-1} + y_{it}$	$\forall i, t,$	(9)	— Shut constraint		
shut if on-then-off	$z_{it} \ge z_{it-1} - x_{it}$	$\forall i, t,$	(10)	- Transmission normal		
normal line flow limit	$\sum_{i} a_{ki} (g_{it} - d_{it}) \le MxFlow_k$	$\forall k, t,$	(11)	constraint		
security line flow limits	$\sum_{i}^{t} a_{ki}^{(j)}(g_{it} - d_{it}) \leq MxFlow_{k}^{(j)}$	$\forall k, j, t,$	(12)	<u> </u>		

 D_t is the total demand in period *t*,

 SD_t is the spinning reserve required in period t,

 $M \times Inc_i$ is max ramprate (MW/period) for increasing gen *i* output $M \times Dec_i$ is max ramprate (MW/period) for decreasing gen *i* output a_{ij} is linearized coefficient relating bus *i* injection to line *k* flow

 $M \times Flow_k$ is the maximum MW flow on line k

 $a_{ki}^{(j)}$ is linearized coefficient relating bus *i* injection to line *k* flow under contingency *j*,

 $MxFlow_k^{(j)}$ is the maximum MW flow on line k under contingency j MAXSP_i is maximum spinning reserve for unit i⁷

