
Design and Programming

Assignment Two

Please read the COMPLETE document before commencing any work.

Preamble
In the previous Case Study exercise, you were introduced to the problem of dealing with

notifications for library members. We had established that there were three types of notification

required by the specification:

1. Notification that a reserved book had become available.

2. Notification that an ordered book had become available.

3. Notification that a book return was late and of a resultant fine.

Further notifications become desirable e.g., when a membership card becomes available for a

member they will need to be informed and told to collect it. Discovering such requirements late in

the development cycle can be costly because code must be rewritten. We should anticipate and

reduce rewrites.

A complete library system is far beyond what we need here. We are looking for a simulation. You

currently have seen two files encoded as UTF8, books.csv and bookloans.csv representing books

possessed by a library and loans of books made by the library over a year. To this find members.csv

containing a list of members with id and card and numbers. Any member with a card number of 0 is

awaiting issue of a membership card.

We are not taking a database approach so that we can examine file handling ability. For purposes of

this exercise, you may open the files and utilise their data in-memory, saving the information back to

file if it has been updated.

JSON and PICKLE storage mechanisms will not deal with user-defined classes. The relevant data will

have to be extracted from your storage structures such as objects, lists and dictionaries. Use of

input() and a menu system is not anticipated and gets no marks. Assume there is a scanner that can

read a bar code.

Tasks

1. Provide code that will allow a member to borrow a book, recording the results as a new

book loan. Each Book class and Member class must have a method scan() which will return

its id value.

Do not worry about representing a membership card. Cards can be an attribute of Member.

Use dummy data to test the code and state the preconditions and postconditions of the

operation in a docstring.

2. Provide code that will allow a member to return a book, again ensuring that necessary data

is stored. Test the functionality with appropriate dummy data and again provide pre and

postconditions as a docstring.

3. Provide functionality that will allow a member of the public to apply for membership. This

will involve the storage of information on the membership request. Each day, a list of new

member details is sent to an external print company who produces membership cards. Cards

are delivered to the library approximately three days later, when the membership

cardnumber is recorded. The format of the card number is made up of the membership

number followed by a single digit indicating the sequence number of the card associated

with the member. 1 means the first card issued to the member, 2 the second and so on.

There is an obvious flaw here, but you can ignore it for purposes of the exercise.

4. Provide functionality to allow a member to reserve a book. Assume that they have the

number of the book available. This will require permanent storage as it may be some time

before a book becomes available.

5. Using the research that you conducted on design patterns, implement a notification system

along the lines described in the Preamble to this assignment. You can assume that all

notifications are sent by email, providing a test sendEmail() method which merely prints to

the console the message passed as an argument. Test the system and show or describe how

it is capable of coping with the situations described in the preamble and how it might be

sufficiently flexible to deal with future notification requirements.

Parts 1 to 4 attract a maximum of 10 marks each and part 5, 20 marks. Within each part, 60% of the

marks are awarded for code and functionality and 40% for good design and documentation. Submit

your work as a Jupyter Notebook. You should also submit your data files (as JSON). It is not

necessary to include the original CSV files, and your code should function without them. Your code

should assume that the data files are in the same directory as the Jupyter Notebook. The JSON files

should be placed in a ZIP file (using the ZIP format). Please do not submit RAR or other file formats.

There are thus two files to submit – your Jupyter Notebook (.ipynb) and the data.zip file.

