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1 Background

Consider the basic pattern matching problem discussed in class: given a string p of length m (a.k.a. the
pattern) and a string x of length n (a.k.a the document), the task is to find all occurrences of p in . We
saw in class that a naive algorithm for this takes O(mn) time, whereas the smarter Knuth-Morris-Pratt
algorithm does the job in O(m + n) time. Throughout this document, if y is a string, then we denote by
yli..j] the substring of y starting at index ¢ and ending at index j. Recall that the Knuth-Morris-Pratt
algorithm computes the failure function h : {1,...,m} — {1,...,m} associated with the pattern p, where
h(#) is the length of the longest proper prefix of p[1..7] that is also a suffix of p[1..7]. This function is then used
to process the document. Thus, the function h remains in the working memory, occupying ©(mlogm) bits
of space. Another ©(logn) bits of space is needed to store the current index while scanning the document,
bringing the overall space complexity to ©(mlogm + logn). The logn term is unavoidable because we have
to store at least a constant number of indices, but can we cut down the mlogm term?

Our task for this assignment is to design and implement an algorithm that has the same time complexity
as Knuth-Morris-Pratt, but uses only O(log m +logn) working memory. Of course, this comes at a cost: the
algorithm does report false positives with a tiny probability e.

2 The Basic Idea

For the purpose of this assignment, assume that the document x is a string over the uppercase Latin alphabet:
{A,B,...,Z}. Identify these characters with numbers as follows: A with 0, B with 1, ..., Z with 25. A
string y = y[0]y[1] - - - y[n— 1] over the set {A,B,...,Z} of length n is the 26-ary representation of the number
fly) = S0 26" x y[i] (i.e. y[0] is the most significant and y[n — 1] is the least significant), and the
function f is a bijection between strings and non-negative integers. The task of finding occurrences of p in a
document z is the same as finding all indices ¢ such that f(z[i..(i + m — 1)]) = f(p). This observation does
give a correct algorithm, but how better is it than the naive and the Knuth-Morris-Pratt algorithms? Apart
from the current index, we need to store the number f(p) in our working memory, and this takes about
logn + log, 26™ space, which is ©(m + logn) — not significantly better than Knuth-Morris-Pratt. For each
i, computing f(z[i..(i + m — 1)]) takes time Q(m). Thus, the running time is Q(mn) — no better than the
naive algorithm. We definitely need more ideas!

To get around the problem of Q(m + logn) space, we choose an appropriate prime number ¢, and store
f(p) mod ¢ in our working memory instead of f(p). Only O(logq) bits of working memory are sufficient
for this. Then for each i, we compute f(z[i..(i + m — 1)]) mod ¢, and report a match if and only if it
equals f(p) mod ¢. This does introduce false positives, and we will see how to control the error probability
by choosing ¢ carefully. Let us worry about the computation first. Note that computing f(z[i..(: + m —
1)]) mod ¢ still takes Q(m) time, resulting in an overall Q(mn) running time. How do you get around
this? Your first challenge is to design an algorithm whose output is the same as the algorithm mentioned
above, but which runs in time O(nlog, ¢), assuming that basic arithmetic operations on d-bit numbers take
O(b) time. Your algorithm may only use O(logn + loggq) bits of working memory. Call this algorithm
modPatternMatch(q,p,x).

3 Controlling Error

How should we choose the prime number ¢ for modPatternMatch(q,p,x) so that we don’t report too
many false-positives (i.e. indices ¢ such that f(z[i..(i + m — 1)]) # f(p) but (f(z[i..(i + m — 1)]) mod ¢) =
(f(p) mod q))? Clearly, choosing ¢ deterministically is not a good idea. A worst-case instance could have
lots of occurrences of a pattern p’ # p such that (f(p’) mod ¢) = (f(p) mod g). To get around this, we
choose ¢ to be a uniformly random prime which is at most an appropriately chosen number N. The number
N will depend on m, the length of the pattern, and e, the upper bound on the error probability. Thus, we
get the following algorithm.

randPatternMatch(e,p,x):



1. Compute N appropriately. (Your job is to figure out the details.)

2. q < randPrime(N). (You are given an implementation of the function randPrime (N) which returns a
uniformly random prime less than or equal to N. For analysis, we will ignore the running time of this
function.)

3. Return modPatternMatch(q,p,x).

As stated in the algorithm, your job is to figure out what N you should use. You will find the following
facts useful.

Claim 1. The number of prime factors of a positive integer d is at most log, d.

Claim 2. Let n(N) denote the number of primes that are less than or equal to N. Then for all N > 1,

N
mN) 2 2logy N
As an exercise, you may try proving the first claim. (Don’t submit the proof.) The proof of the second
claim is outside the scope of the course.
For full credit, randPatternMatch(e,p,x) must run in time O((m+n)log ) and use O(log n-+log(m/e))
working space, ignoring the time taken and space used by the call to the function randPrime provided to
you. It must return a sorted list L of indices such that for each index i:

1. If x[i..(i + m — 1)] = p, then ¢ € L with probability one.
2. If z[i..(i + m — 1)] # p, then Pr[i € L] < e.

In other words, for each ¢, randPatternMatch must have one-sided error with probability at most ¢.

4 Wildcards

Next, let us be a bit more ambitious. Suppose now that pattern p is a string over the set {A, B, ..., Z}U{?’},
where ‘7’ is a wildcard character, and p contains exactly one occurrence of the wildcard. The document x
is still a string over {A,B,...,Z}. We say that the pattern p matches the document z at index i if for all
j€{0,...,m—1}: plj] = «[i + j] or p[j] = ‘7. Given p and z, the goal is to report all indices ¢ such that p
matches z at index i. Consider the following algorithm.

randPatternMatchWildcard(e,p,x):

1. Compute N exactly like in the first step of randPatternMatch.
2. q ¢ randPrime(N).
3. Return modPatternMatchWildcard(q,p,x).

This algorithm is analogous to randPatternMatch, except that instead of modPatternMatch(q,p,x), it
uses an algorithm modPatternMatchWildcard(q,p,x). Your job is to modify the ideas behind the design
of modPatternMatch(q,p,x) and come up with an implementation of modPatternMatchWildcard(q,p,x)
so that the algorithm randPatternMatchWildcard(e,p,x) runs in time O((m + n)log ), uses O(logn +
log(m/e)) working space (again, ignoring the time taken and space used by randPrime), and returns a sorted
list L of indices such that for each index i:

1. If p matches = at index 4, then ¢ € L with probability one.

2. If p doesn’t match = at index 4, then Pr[i € L] < e.



5 A word of caution

Strings are immutable. If you somehow attempt to use the space in the given input string for your compu-
tation (eg. by creating a list of characters from it), you are using as much working memory as the length of
the string. This is obviously unacceptable given our space constraints.

6 Submission Specifications

You are given a file named a4.py. The file contains the following functions.

1. randPrime(N): this function is completely implemented and it returns a random prime number less
than or equal to N. The time taken for this call and the space used is to be ignored in the analysis.

2. findN(eps,m): this function is called by randPatternMatch and randPatternMatchWildcard. Given
the pattern length m and the error bound err, this function should return an appropriate N so that the
callers satisfy their respective error bounds. You are required to implement this.

3. randPatternMatch(eps,p,x): this function is completely implemented, but it uses functions findN
and modPatternMatch(q,p,x), which you are required to implement. The requirements on the function
randPatternMatch are given in Section

4. randPatternMatchWildcard(eps,p,x): this function is completely implemented, but it uses functions
findN and modPatternMatchWildcard(q,p,x), which you are required to implement. The require-
ments on the function randPatternMatchWildcard are given in Section [

5. modPatternMatch(q,p,x): this function is required to return a sorted list L of indices i such that
(f(z[i..(i+m—1)]) mod ¢q) = (f(p) mod q), where m is the length of p. It must run in time O(m+n),
where n is the length of z, and use O(log gq) working memory. You are required to implement this.

6. modPatternMatchWildcard(q,p,x): You are required to implement this function. It should also
return a sorted list L of indices ¢ such that (f(z[i..(i + m — 1)]) mod ¢q) = (f(p) mod ¢q), where m is
the length of p, except the definition of f changes now. Figure out what the new definition of f should
be, so that randPatternMatchWildcard satisfies its requirements. The time and space bounds are the
same as those of modPatternMatch.

Complete the implementations of the functions modPatternMatch, modPatternMatchWildcard, and findN,
and submit a file with the same name — a4.py.

7 Evaluation

We will be using a mix of both auto-grading and manual grading to assess the correctness of all components
of your code. As a requirement, please write a clean and self-explanatory code. You will lose marks if the
TA fails to understand your code. Add comments to elaborate wherever necessary. You might be called for a
viva on a case-by-case basis. We have primarily decided the following assignment (this may slightly change):

1. Correctness of modPatternMatch — autograder
2. Space and Time complexities of your solution — manual grading
3. Check the correctness of other parts — manual grading

Note: we will be assessing the theoretical time and space complexities of your code. You may ignore the
differences that arise in practice due to Python’s semantics.
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Example Test Cases

modPatternMatch (1000000007, ’CD’, ’>ABCDE’)

modPatternMatch (1000000007, ’AA’, >AAAAA’)
1, 2, 3]
modPatternMatchWildcard (1000000007, °D?’, ’ABCDE’)

modPatternMatch(2, ’AA’, >ACEGI’)
1, 2, 3]
modPatternMatchWildcard (1000000007, >7A’, ’ABCDE’)
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