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Abstract

Birds, mammals, and certain fishes, including tunas, opahs and lamnid sharks, are endothermic, conserving internally
generated, metabolic heat to maintain body or tissue temperatures above that of the environment. Bluefin tunas are
commercially important fishes worldwide, and some populations are threatened. They are renowned for their en-
dothermy, maintaining elevated temperatures of the oxidative locomotor muscle, viscera, brain and eyes, and oc-
cupying cold, productive high-latitude waters. Less cold-tolerant tunas, such as yellowfin tuna, by contrast, remain in
warm-temperate to tropical waters year-round, reproducing more rapidly than most temperate bluefin tuna pop-
ulations, providing resiliency in the face of large-scale industrial fisheries. Despite the importance of these traits to
not only fisheries but also habitat utilization and responses to climate change, little is known of the genetic processes
underlying the diversification of tunas. In collecting and analyzing sequence data across 29,556 genes, we found that
parallel selection on standing genetic variation is associated with the evolution of endothermy in bluefin tunas. This
includes two shared substitutions in genes encoding glycerol-3 phosphate dehydrogenase, an enzyme that contributes
to thermogenesis in bumblebees and mammals, as well as four genes involved in the Krebs cycle, oxidative phos-
phorylation, b-oxidation, and superoxide removal. Using phylogenetic techniques, we further illustrate that the eight
Thunnus species are genetically distinct, but found evidence of mitochondrial genome introgression across two
species. Phylogeny-based metrics highlight conservation needs for some of these species.

Key words: endothermy, thermogenesis, phylogenomics, RNA-sequencing, transcriptomics, introgression, positive
selection, mitochondrial–nuclear discordance.

Introduction
The Thunnus tuna clade consists of some of the most com-
mercially important fish species in the world. The genus
includes the three iconic bluefin species, which have all in
recent times undergone precipitous population declines,
some now recovering with careful management plans, but
all remain the target of fisheries owing to their high commer-
cial value (Matsuda et al. 1998; Safina and Klinger 2008;
MacKenzie et al. 2009; ISC 2016). By contrast, other
Thunnus species sustain huge global fishery yields; with the
yellowfin tuna, Thunnus albacares, in particular comprising
the seventh highest global landings of all fish species in 2014
(FAO 2016). Although the eight Thunnus species are thought
to have diverged rapidly (Miya et al. 2013; Santini et al. 2013;
D�ıaz-Arce et al. 2016), considerable ecological and physiolog-
ical variability exists within the clade (Bernal et al. 2017).

All tuna species (also including the genera Euthynnus,
Auxis, Katsuwonus, and Allothunnus) are regionally endother-
mic (supplementary fig. S1, Supplementary Material online).
Unlike other teleosts, much of their aerobic red muscle is
located near the center of the body. The evolution of vascular
countercurrent heat exchangers has enabled the conserva-
tion of heat generated by metabolism and contraction in this
muscle, allowing the maintenance of elevated tissue temper-
atures (Carey and Teal 1966; Block and Finnerty 1994;
Sepulveda et al. 2008). The Thunnus tunas are particularly
notable among the tunas as they have diversified rapidly
and show a wide degree of variability in their distributions
and thermal tolerances. Taxonomists initially split tunas of
the genus Thunnus into two subgenera based on morpholog-
ical characters: the tropical Neothunnus (including yellowfin,
blackfin [T. atlanticus], and longtail [T. tonggol]) and the more
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high-latitude and cold-tolerant Thunnus (including Atlantic
bluefin [T. thynnus], Pacific bluefin [T. orientalis], southern
bluefin [T. maccoyii], bigeye [T. obesus], and albacore tuna
[T. alalunga]; Gibbs and Collette 1967). These cold-tolerant
Thunnus species, unlike the three species of the Neothunnus
subgenus, have additional heat-exchangers around their vis-
cera, enabling retention of heat generated during digestion
and in some cases the brain and eye regions (Linthicum and
Carey 1972). Increases of visceral temperature postdigestion
that may increase speed of digestion and result in a larger
thermal excess in cooler high latitude (Whitlock et al. 2015).
The albacore tuna also extends its range into high-latitude
waters, preferring waters where the sea surface temperatures
are as low as 14 �C (Arrizabalaga et al. 2015). The bigeye tuna
occupies tropical and subtropical waters, but spends consid-
erable time diving to deep mesopelagic resources, encounter-
ing cool waters, before returning to the surface to warm up
(Holland and Sibert 1994; Schaefer and Fuller 2010). Although
it was placed in the Thunnus subgenus, it shares characteristics
with the tropical Neothunnus and was considered an interme-
diate between the two (Gibbs and Collette 1967). Electronic
tagging has shown that the three bluefin tuna species are
especially cold-tolerant, feeding as large adults in high latitudes
in subpolar waters where sea temperatures can be as low as 9
�C at the surface and 0–2 �C at depth (Bestley et al. 2009; Block
et al. 2011; Arrizabalaga et al. 2015; Wilson et al. 2015).

The capacity of bluefin tunas to spend prolonged periods
of time in cool subpolar and temperate waters has been hy-
pothesized to be associated with increases in cardiac capacity
and aerobic metabolism. Among Thunnus species with meas-
urements to date, bluefin tunas have been shown to have
elevated cardiac capacities particularly in excitation–contrac-
tion coupling (Landeira-Fernandez et al. 2004) and an in-
creased capacity to maintain cardiac ion channels
conductance at low temperatures (Galli et al. 2011). The
deep red muscle of yellowfin tuna is known to be specialized
to operate at high temperatures, being very sensitive to tem-
perature decrease (Altringham and Block 1997). This suggests
that even at low ambient water temperatures, elevated tem-
peratures must be maintained in deep muscle to maintain
near-optimal function. Similar physiological studies have not
been carried out in any bluefin tuna species, and so it is not
known whether there deep red muscle is equally thermally
sensitive. However, large Atlantic bluefin tuna are known to
maintain stable elevated temperatures in deep muscle at am-
bient water temperatures of 9–17 �C (Stevens et al. 2000). This
has led authors to suggest that the capacity of bluefin tunas to
occupy high latitudes with low sea surface temperature is
associated with increased endothermic capacity (Blank,
Farwell, et al. 2007), as higher thermal gradients between
deep muscle and the ambient water must be maintained
for prolonged periods. At low temperatures below their ther-
mal optimum, the metabolic rate of Pacific bluefin tuna
increases. This is atypical of ectothermic fish, where metabolic
rate would decrease with temperature, but typical of endo-
thermic animals (Blank, Morrissette, et al. 2007). This suggests
that upregulation of aerobic metabolism may be associated
with thermoregulation and endothermy in these species.

Another aspect in which the Thunnus vary is in their re-
productive biology. The three species of the subgenus
Neothunnus, alongside the bigeye, remain in warm-
temperate to tropical waters year-round. These four species
are thought to spawn throughout much of the year. By con-
trast, the albacore and bluefin tunas have more restricted
spawning seasons, as they spend much of the year feeding
in productive higher-latitude waters, returning to subtropical
or tropical seas to spawn for short durations (Schaefer 2001;
Muhling et al. 2017). Higher fecundities and generally faster
generation times of tropical tunas (Juan-Jord�a et al. 2013)
have counterbalanced enormous fishing pressure (Juan-
Jord�a et al. 2015), although bigeye and yellowfin populations
are, in some regions, decreasing in size (table 2). Life-history
traits are therefore critical to the survival of tunas in modern
oceans where humans have increased predation pressure
(Kroodsma et al. 2018). Despite the relevance to high-stakes
fisheries, little is known of the evolutionary processes to have
driven this physiological and ecological diversification of the
Thunnus clade.

Estimates of phylogenetic relationships using partial ge-
nomic data (D�ıaz-Arce et al. 2016) and mitochondrial se-
quence data (Chow and Kishino 1995; Bayona-V�asquez et al.
2017) have suggested that the three bluefin tuna species are
paraphyletic. In the partial genomic data phylogeny, the
southern bluefin is sister to the warm-water tuna clade
(supplementary fig. S2, Supplementary Material online).
By contrast, in the mitochondrial genome phylogenies,
Atlantic and southern bluefins are sister species, but
Pacific bluefin is sister taxa to the albacore (supplementary
fig. S2, Supplementary Material online). Prior to the advent
of mitochondrial phylogenetics, Pacific and Atlantic bluefin
tunas were considered a single species (Chow and Kishino
1995; Collette et al. 2001). These northern bluefins are
thought to be only weakly differentiated in the nuclear ge-
nome (Chow et al. 2006; D�ıaz-Arce et al. 2016). This mito-
chondrial–nuclear discordance has been used to
hypothesize introgression between albacore and Pacific
bluefin tuna. However, this may also be driven by incom-
plete lineage sorting (ILS; Toews and Brelsford 2012), which
has not been tested. Rapid radiations are generally associ-
ated with a high degree of gene-tree discordance, where
different genes have conflicting topologies (Pamilo and
Nei 1988). This may be a result of both ancestral hybridiza-
tion events and failure of ancestral genetic variation to sort
in-between speciation events, resulting in ILS (Maddison
1997). Given the rapid divergence and large population sizes
of Thunnus tuna, ILS is likely to have generated significant
gene-tree discordance. This may have misled phylogenies of
the Thunnus tuna to date, as “supermatrix” techniques they
utilized may be inaccurate when genealogical discordance is
high (Kubatko et al. 2007; Pirie 2015; D�ıaz-Arce et al. 2016;
Mendes and Hahn 2017). Genealogical discordance may also
explain why the evolution of traits in a rapid radiation may
not correlate with monophyletic relationships in the species
tree. This may be explained by processes such as parallel
selection on standing variation or introgression (Hahn and
Nakhleh 2016; Pease et al. 2016).
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Here, we used an RNA-seq data set consisting of multiple
individuals of each Thunnus species to explore the evolution-
ary processes underlying their diversification. The first aim of
our study was to clarify phylogenetic relationship among the
Thunnus species. The second aim was to assess how hybrid-
ization, selection on standing variation, and de novo muta-
tion have shaped the Thunnus radiation. We find that de
novo mutation has played a role in the evolution of the
tropical group and that selection on standing variation has
driven the phenotypic divergence of cold tolerance in bluefin
tunas. This includes bluefin-specific variants in genes associ-
ated with key metabolic and thermogenic functions.

Results and Discussion
To elucidate the evolutionary history of Thunnus, and to learn
more about the evolution of endothermy, specifically in the
bluefin tuna and visceral endotherm groups, we collected
RNA-sequence data for 25 individual tunas, supplementing
NCBI Short Read Archive data to reach a total of 46 individ-
uals (supplementary table S1, Supplementary Material on-
line). This transcriptomic data set included at least two
individuals from each of the eight Thunnus species, plus the
skipjack tuna, Katsuwonus pelamis, as an outgroup. We note
that there was some variation in tissue type used among the
46 individuals, which may have reduced coverage of tissue-
specific genes. We first generated a merged de novo assembly
based on 102 unique assemblies from skeletal muscle (red
and white muscle) and heart tissue (compact ventricle,
spongy ventricle, and atrium) of three individual Pacific blue-
fin tuna. Multiple tissue types were used to provide a more
complete reference assembly. The merged assembly com-
prised 48,648 transcripts, corresponding to 29,556 genes.
This merged assembly was more complete and had less re-
dundancy than any of the individual assemblies (complete
sequences for 89.1% of a bony fish single-copy ortholog set
[see Materials and Methods]; supplementary table S2 and fig.
S3, Supplementary Material online). Therefore, sequence data
from each of the 46 individuals were mapped and genotyped
against this merged reference transcriptome.

Introgression Evident in Mitochondrial, but Not
Nuclear Genomes of Tunas
Using either coalescence or concatenated-gene (supermatrix)
phylogenetic analyses, we inferred the same phylogeny. This
was consistent using coalescent trees based on either gene
trees with poorly supported branches collapsed into hard
polytomies or not, and with supermatrix trees based on either
4-fold degenerate sites or full transcripts, with all nodes in the
trees supported by a posterior probability of 1 or bootstrap
support of 100% (supplementary fig. S4, Supplementary
Material online). Importantly, this phylogenetic analysis dem-
onstrates that both the bluefin tunas and visceral endotherms
are paraphyletic, as was suggested by partial-genomic data
(D�ıaz-Arce et al. 2016). All individuals within each species
formed monophyletic groups (supplementary fig. S5,
Supplementary Material online), with Atlantic and Pacific
bluefin tunas being segregated as distinct taxa. The Atlantic

and Pacific bluefin tuna distinction is further supported by a
Bayes Factor Delimitation model (posterior probability ¼
0.999). Dating the Thunnus phylogeny using fossil calibration
shows that this lineage has radiated rapidly within the last 6–
10 My (fig. 1). Notably, a high level of gene-tree versus species-
tree discordance is observed, as indicated by quartet concor-
dance factors <50% at internal nodes (fig. 1). We calculated
that this discordance did not deviate from expectations un-
der ILS (P¼ 0.2), which argues against ancestral hybridization
events evident in the nuclear genome (supplementary fig. S6,
Supplementary Material online). This idea is further sup-
ported by hierarchical clustering and multidimensional scal-
ing (MDS) analyses, which both indicated no admixture
between species (fig. 2). Only longtail and blackfin tunas
(two species with lowest sample sizes) fail to segregate in
the best-fitting hierarchical clustering model (seven ancestral
populations, cross-validation [CV] error¼ 0.47; supplemen-
tary fig. S7, Supplementary Material online), although they do
so in the eight ancestral population model (CV error¼ 0.49;
fig. 2) and in the phylogenetic trees (supplementary fig. S6,
Supplementary Material online).

We did, however, find significant mitochondrial–nuclear
discordance (supplementary fig. S8, Supplementary Material
online). In the mitochondrial phylogenetic tree, as in other
mitochondrial studies (Chow and Kishino 1995; Qiu et al.
2014; Bayona-V�asquez et al. 2017), the Pacific bluefin and
the albacore are clustered. In the nuclear-based tree the
Pacific bluefin is sister to the Atlantic bluefin, more distantly
related to the albacore (fig. 1). This discordance has been used
as evidence of introgression between Pacific bluefin and the
albacore (Chow and Kishino 1995; Bayona-V�asquez et al.
2017). By simulating gene trees, we found that the sister re-
lationship of Pacific bluefin and albacore tunas is unlikely due
to ILS alone (P¼ 0.02). This shows that this mitochondrial–
nuclear discordance is indeed likely due to introgression.

Taken together, we find that Thunnus tuna show evidence
of introgression in the mitochondrial, but not nuclear
genomes. This has also been observed in a wide range of
taxa (Zieli�nski et al. 2013; Pons et al. 2014; Good et al.
2015), and is likely when selection has favored these mito-
chondrial variants and background selection and recombina-
tion has removed the introgressed nuclear variants (Bonnet
et al. 2017; Sloan et al. 2017). However, this does little to
explain the evolution of endothermy in bluefin tunas.
Instead, much of the nuclear gene-tree discordance is likely
due to standing variation from the ancestral populations be-
ing retained during a rapid radiation, as not all the variation
has had time to be fixed between species splits (Pamilo and
Nei 1988). We note that power to detect hybridization events
is reduced as time since hybridization increases, particularly
when speciation events are rapid (Folk et al. 2018). We there-
fore cannot conclusively rule out hybridization playing a
greater role in the Thunnus radiation.

Parallel Selection on Standing Genetic Variation in
Bluefin Tuna
To test whether parallel selection on this ancestral genetic
variation underlies the evolution of endothermy in bluefin
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tunas or visceral endotherms, we used a phylogenetic
genome-wide association test (PhyloGWAS; Pease et al.
2016). We found that there was an excess of genes with
nonsynonymous mutations shared by the three bluefin
tuna species compared with expectations due to ILS alone
(P< 0.0006). By contrast, there was no excess of shared non-
synonymous mutations between the visceral endotherms
(P¼ 0.14). We found parallel selection on standing genetic
variation in 96 genes in the bluefin tunas (supplementary
table S3, Supplementary Material online). Functional gene
ontology (GO) enrichment analysis indicated enrichment in
several terms relating to glycerol-3-phosphate dehydrogenase
(GPDH) activity (supplementary table S4, Supplementary
Material online). Furthermore, bluefin-specific nonsynony-
mous mutations were found in genes that are functionally
related to aerobic metabolism (Blank, Farwell, et al. 2007;
Wiens et al. 2017) and relevant to the evolution of endo-
thermy (table 1; Matsuda et al. 1993; Mattiazzi et al. 2002;
Lushchak et al. 2014; Naiki et al. 2014). These genes are all
characterized by one or two bluefin group-specific nonsynon-
ymous substitutions (fig. 1). This is consistent with previous
studies that have found that the vast majority of genes with
variants fixed by selection on standing variation are

characterized by one or just a few mutations (Pease et al.
2016; Wu et al. 2017). Single mutations can, however, have
strong effects on phenotype (Mattiazzi et al. 2002; Fox et al.
2017).

To understand the evolution of endothermy it is critical to
elucidate how incremental increases in metabolic rate, oxida-
tive pathways, and thermogenesis occur in any lineage.
Studies to date have suggested metabolic rates may be higher
in bluefin tuna species; Pacific bluefin tuna have higher met-
abolic rates than yellowfin tuna, acclimated at the same tem-
peratures and caught in the same California current waters.
These fish were trained to swim in a flume at the same swim-
ming speed and were of similar size (Blank, Farwell, et al.
2007). Measurements of southern bluefin tuna metabolic
rates have also exceeded those from skipjack, albacore, kawa-
kawa tuna (Euthynnus affinis), and yellowfin (Fitzgibbon et al.
2008). However, accurately measuring metabolic rates of
large, active pelagic fish is difficult, and comparing between
studies is difficult due to experimental variation which may
substantially impact results.

Here we found bluefin tuna-specific mutations in six genes
associated with aerobic capacity (table 1), supporting the
view of unique adaptations in aerobic metabolism in the

FIG. 1. Fossil-dated phylogeny of tunas and parallel selection in bluefin species. 3D surface protein structures for genes with shared nonsynon-
ymous mutations in bluefin tunas and a function relating to aerobic metabolism are given in the blue box, with the two branches where parallel
selection on these variants occurred highlighted with blue squares, with bluefin species highlighted in blue. 3D protein structures inferred for genes
under lineage-specific selection in the warm-water group are given in the red box. The branch these changes correspond to is indicated with a red
square, with warm-water species highlighted in red. Species with visceral endothermy are indicated with a “V.” Amino acid changes and positions
on the zebrafish reference genome (see table 1) are given, and their location on each protein model is highlighted in red. Species illustrations are
from the FAO and wikimedia, rescaled according to the maximum length of each species, taken from Juan-Jord�a et al. (2013). Gray error bars show
95% confidence intervals of divergence-date estimates. Black brackets on root node indicate minimum and maximum fossil calibration. Node
labels are Bayesian posterior probability (pp), followed by concordance factors (cf) for the primary quartet inferred by ASTRAL; values lower that
100% indicate increasing gene-tree discordance, which in this case are within expectation from ILS.
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bluefin tunas. This includes isoforms of GPD1 (GPD1b and
GPD1c), which works in concert with mitochondrial GPD2 to
form the glycerol-3-phosphate (G3P) shuttle. This pathway
uses the NADH synthesized during glycolysis to contribute
electrons to the oxidative phosphorylation pathway in the
mitochondria, fueling ATP synthesis. ATP synthesis by G3P-
mediated respiration is inefficient, as only two ATP molecules
are synthesized per NADH molecule, instead of the three ATP
derived from NADH formed inside the mitochondria.
However, it sustains a high rate of oxidative phosphorylation
(Gong et al. 1998). This metabolic inefficiency, coupled with
the high oxidative phosphorylation rates, produces heat ele-
vating tissue temperatures locally. This pathway has been
found to be important for thermogenesis in mammals and
bumble bee flight muscles (Gong et al. 1998; Masson et al.
2017). GPDH also plays an important role in lipid metabolism
(Hao et al. 2015), which these mutations also may relate to.
Selection for aerobic metabolism in bluefin tunas is further
implicated by mutations in key oxidative phosphorylation
genes (ATP5C1; Matsuda et al. 1993), Krebs cycle (ACO2;
Lushchak et al. 2014) and b-oxidation (HADHB; Naiki et al.
2014) genes, as well as in SOD1. This latter gene codes for the
enzyme that removes toxic reactive oxygen species (ROS)
produced during aerobic respiration (Mattiazzi et al. 2002).
Recent measurements on isolated mitochondria of Pacific
bluefin tuna indicate that they produce ROS at a similar
rate to ectothermic fish species at a similar temperature
(Wiens et al. 2017). However, this rate is temperature depen-
dent, meaning that the elevated body temperature in bluefin
tuna tissues will increase metabolism and ROS production
and increase the risk of mitochondrial damage (Murphy
2009). Notably, the amino acid substitutions in SOD1 in blue-
fin tunas (fig. 1) are both adjacent to a well-characterized

mutation site in mice. G93A transgenic mice show significant
defects in mitochondrial function due to increased oxidative
damage (Mattiazzi et al. 2002). The proximity of the bluefin
substitutions to this site suggests that they possibly relate to
reducing oxidative damage, which would be exacerbated by
elevated metabolic rates associated with selection for
endothermy.

Using 3D-structure models predicted using Phyre2 (Kelley
et al. 2015) for each of these proteins, we identified that all
nonsynonymous mutations fell at amino acid sites on the
surface of the protein, except for that in ATP5C1 (fig. 1).
None of these mutations is particularly conserved across
other organisms (ConSurf score 1–6). However, we identified
that these amino acid changes significantly alter either pro-
tein electrostatic potential or stability (table 1), which likely
indicate functional roles associated with these mutations.
Overall, our analyses indicate that parallel selection on genetic
variants relating to both aerobic metabolism pathways and
oxygen utilization has contributed to the unique phenotype
of bluefin tunas. Experimental validation of these candidate
genes, alongside detailed analysis of the G3P-shuttle in the
context of isolated mitochondrial function and oxidative
phosphorylation in tuna is now necessary. These experiments
could determine whether selection for G3P-mediated respi-
ration provides novel pathways for heat production in bluefin
tunas, as in bees and mammals.

Positive Selection in Warm-Water Tunas
Our transcriptomic data indicate that warm-water and trop-
ical tunas (bigeye, yellowfin, longtail, and blackfin) form a clade
(fig. 1). These fish tend to occupy tropical and warm-temper-
ate waters for longer durations than bluefin tunas throughout
the year (Block et al. 2011), with most populations staying in
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warm-temperate to tropical waters year-round, and in general
mature earlier (Juan-Jord�a et al. 2013). In these warm-water
tunas, we detected selection on de novo lineage-specific
mutations in two genes, both with possible functions linked

to growth and embryogenesis but not endothermy: crooked
neck pre-MRNA splicing factor 1 (CRNKL1, CodeML branch-
site test P¼ 0.0007) and granulin a (GRNA, P¼ 0.004;
Bateman and Bennett 1998; Chung et al. 2002). As with the

Table 1. Candidate Genes Underlying the Evolution of Endothermy in Bluefin Tunas (see text for details).

Gene Name Gene
Abbreviation

Uniprot
Reference

Sequence and
Site of

Mutation

Consurf Amino
Acid Site

Phylogenetic
Conservation

Score (1 5 highly
variable,

9 5 highly
conserved)

Change in Protein
Stability (pseu-
dofolding-free
energy DDG)

Significant
Change in

Electrostatic
Potential?

(nonparametric
Wilcoxon

signed-rank
test)

Putative Function

Glycerol-3-phosphate
dehydrogenase 1b

GPD1b F1QGK0_DAN-
RE: 219

3 20.8 Increase
(Z-score
3.37)

Transfers cytosolic NADH,
produced by glycolysis, to
mitochondrial glycerol-3-
phosphate dehydrogenase
as NAD1, which then feeds
oxidative phosphorylation
(McDonald et al. 2017)

Glycerol-3-phosphate
dehydrogenase 1c

GPD1c Q7T3H5_DAN-
RE: 278

6 20.9 No (Z-score 1.6) As with GPD1b

Aconitase 2 ACO2 F8W4M7_DA-
NRE: 452

2 20.3 Decrease
(Z-score
22.1)

Mitochondrial aconitase iso-
form. Controls cellular ATP
production by regulating
intermediate flux in the
Krebs cycle (Lushchak et al.
2014)

ATP synthase, H1
transporting, mito-
chondrial F1 complex,
gamma polypeptide 1

ATP5C1 Q6P959_DAN-
RE: 198

4 22.1 No (Z-score 0.8) Encodes gamma subunit of
mitochondrial ATP syn-
thase. This catalyzes ATP
synthesis during oxidative
phosphorylation (Matsuda
et al. 1993)

Hydroxyacyl-CoA dehy-
drogenase/3-ketoacyl-
CoA thiolase/enoyl-
CoA hydratase (tri-
functional protein),
beta subunit

HADHB Q7ZTH6_DAN-
RE: 189

1 20.6 Decrease
(Z-score
25.1)

Subunit of mitochondrial tri-
functional protein, which
catalyzes the last three
steps of mitochondrial
b-oxidation of long-chain
fatty acids. This in turn
feeds the krebs cycle and
aerobic metabolism (Naiki
et al. 2014)

Superoxide dismutase 1,
soluble

SOD1 SODC_DANRE:
92 and 93

Site 92: 1
Site 93: 2

Site 92: 10.4
Site 93: 21.1

Site 92: No
(Z-score 0.7)

Site 93: Increase
(Z-score 4.4)

Destroys toxic free radicals,
the majority of which are
produced by mitochondria
(Mattiazzi et al. 2002)

NOTE.—Amino acid changes are provided in figure 1.

Table 2. Fishing Pressure, Conservation Status, and Calculated Evolutionary Distinctness and EDGE Scores.

Common Name Species Name 2015 Global
Fisheries Yield
(tonnes, FAO)

IUCN Red List Status (GE
score for EDGE calcula-

tion; IUCN 2017)

Global Spawning Stock
Biomass Change Over

Past Three Generations
(IUCN 2017)

Evolutionary
Distinctness
(ED)

EDGE
Score

Albacore tuna Thunnus alalunga 223,013 Near-threatened (1) 237% 12.2 3.3
Yellowfin tuna Thunnus albacares 1,359,192 Near-threatened (1) 233% 9.0 3.0
Blackfin tuna Thunnus atlanticus 1,420 Least concern (0) Stable 8.8 2.3
Southern bluefin tuna Thunnus maccoyii 21,837 Critically endangered (4) 285% 9.6 5.1
Bigeye tuna Thunnus obesus 417,336 Vulnerable (2) 242% 9.0 3.7
Pacific bluefin tuna Thunnus orientalis 35,524 Vulnerable (2) 219% to 33% 8.1 3.6
Atlantic bluefin tuna Thunnus thynnus 23,811 Endangered (3) 251% 8.1 4.3
Longtail tuna Thunnus tonggol 201,894 Data deficient (—) Unknown 8.8 —
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bluefin genes, the amino acid changes were at the surface
(fig. 1), in variable amino acid sites (ConSurf score 1–6), but
with significant impacts on the overall protein electrostatic
potential. The substitution in GRNA at zebrafish amino acid-
site 461 decreased electrostatic potential (nonparametric
Wilcoxon signed-rank test Z-score ¼ �5.8), whereas that at
468 increased it (Z-score¼ 5.9). The substitution at CRNKL1
site 683 decreased electrostatic potential (Z-score ¼ �4),
whereas that at site 748 did not (Z-score¼ 0.3). None of these
substitutions strongly influenced protein stability (pseudo
DDG �0.09 to 0.32). Importantly, many more genes specifi-
cally associated with reproduction and maturation may not
have been expressed in our muscle samples.

Bluefin Tuna Species Are Evolutionarily Distinct and
Globally Endangered
Finally, combining red list status from the World
Conservation Union (IUCN) and branch lengths in our phy-
logenetic trees, we calculated EDGE scores for each species
(i.e., evolutionary distinctness and globally endangered status
[Isaac et al. 2007], table 2). This score is a popular metric in
conservation biology, as it identifies those threatened species
that deserve particular attention because of their unique evo-
lutionary history. Relative to other tunas, we found the high-
est scores in southern bluefin (5.1) and Atlantic bluefin (4.3).
We also highlight the importance of gathering data for the
longtail tuna, which is currently classified as “data-deficient,”
but has a substantial global fishery yield of 201,894 tonnes in
2015 (table 2). Longtail tuna may be increasingly targeted
directly and as bycatch, as the populations of other species
with large fisheries are decreasing or are quota limited.

Tunas are unusual among bony fish for their evolution of
endothermy (Block et al. 1993). Our analyses shed light on the
phylogeny and genetic basis of the evolution of endothermy
in tunas. We found bluefin-specific nonsynonymous muta-
tions in six key aerobic metabolism genes, supporting the
hypothesis that adaptations in aerobic metabolism are key
to the endothermy of these species, and their ability to ex-
pand their niche into high latitudes. Further studies may wish
to consider whether there has been any genetic convergence
with the slender tuna, Allothunnus fallai, whose phylogenetic
placement is currently unclear (Sepulveda et al. 2008; Santini
et al. 2013). Because we have shown a high degree of gene-
tree discordance among the Thunnus species, indicating a
high degree of ancestral variation, trait evolution should
not be considered to show a stepwise progression across
the Thunnus phylogeny. This will influence how we analyze
the diversification of further important traits as increasing
information becomes available. For example, hypoxia toler-
ance varies considerably among the five Thunnus species for
which it has been measured, inconsistently with the current
species tree (Bernal et al. 2017). This trait will have strong
impacts on future tuna distributions as deoxygenation of the
ocean will increase under global warming scenarios (Breitburg
et al. 2018). The rapid availability of fully sequenced genomic
resources particularly from bluefin tunas will improve our
capacity to study these unique fish.

Materials and Methods

Sample Collection and RNA Sequencing
Samples were collected from multiple individuals of all eight
Thunnus species along with the Skipjack tuna, Katsuwonus
pelamis, which was used as an outgroup. Short-read sequence
data downloaded from the NCBI Short Read Archive for 19
individuals were supplemented with samples collected from
fish markets (the United Kingdom and the Netherlands) and
from the wild (Bahamas, southern Australia, and California;
supplementary table S1, Supplementary Material online) by
the Tuna Research and Conservation Center, University of
Tasmania, and Cape Eleuthera Institute. Tissue samples
stored in RNALater (Thermo Fisher Scientific, Waltham,
MA) were sent to BGI Tech Solutions, Hong Kong. There,
RNA was extracted using TRIzol (Invitrogen, Carlsbad, CA).
Using the TruSeq RNA Library Preparation Kit (v2), cDNA
libraries were produced. These were then sequenced using
the Illumina HiSeq 4000 (Illumina Inc, San Diego, CA) with
100-bp paired-end reads. Raw sequencing reads have been
deposited to NCBI GenBank under BioProject PRJNA495053.

Read Processing and Reference Transcriptome
Initial quality control was carried out by BGI Tech Solutions,
with low-quality reads (average phred< 20), primer and
adapter sequences trimmed. Upon retrieval, sequencing
errors in these reads were corrected using Rcorrector
(V1.0.2; Song and Florea 2015), then further trimmed for
low-quality bases and adaptor sequences (phred< 2, follow-
ing Macmanes [2014]), using Trim Galore! (v0.4.0; http://
www.bioinformatics.babraham.ac.uk/projects/trim_galore/;
last accessed March 31, 2017). Reads for each of the three
Pacific bluefin tuna individuals with multiple tissue types
sequenced were normalized in silico to a depth of 100�
using Trinity (v2.4.0; Grabherr et al. 2011). Separate assem-
blies were carried out for each of the three individuals,
using multiple assembly softwares and k-mer length set-
tings. For Trinity (v2.4.0), Bridger (v2014-12-01; Chang et al.
2015), and Binpacker (v1.0; Liu et al. 2016), k-mer values of
19, 25, and 32 were used. For SOAPdenovo-trans (v1.03; Xie
et al. 2014), Velvet-OASES (Velvet v1.2.10, OASES v0.2.08;
Zerbino and Birney 2008; Schulz et al. 2012), Trans-ABySS
(v1.5.5; Robertson et al. 2010), IDBA-tran (v1.1.0; Peng et al.
2013), and Shannon (v0.0.2; Kannan et al. 2016), k-mer
values of 21, 31, 41, 51, 61, and 71 were used. This resulted
in 34 assemblies for each of the three Pacific bluefin tuna
individuals (three each for Trinity, Bridger, and Binpacker;
six each for SOAPdenovo-trans, Velvet-OASES, Trans-
ABySS, and Shannon; one for IDBA-tran, which builds on
each previous k-mer length assembly resulting in one final
assembly), for 102 unique assemblies in total. Only tran-
scripts of at least 300 bp were retained. Coding sequences
(CDS) were inferred from these using TransDecoder (v3.0.1;
Grabherr et al. 2011). CDS from all 102 assemblies were
concatenated and clustered using CD-HIT-EST (Fu et al.
2012), with the settings -aL 0.005 -aS 1 -c 0.97 -d 0 -G 0 -
M 0 (Cerveau and Jackson 2016). Contigs generated by
multiple assembly softwares and k-mer settings are less

Ciezarek et al. . doi:10.1093/molbev/msy198 MBE

90



likely to be artifacts (Cerveau and Jackson 2016; Durai and
Schulz 2016). We therefore retained the longest CDS rep-
resentative of clusters containing clusters corresponding to
at least an average of two assembly softwares with two k-
mer settings each per individual. The transcript correspond-
ing to each of these CDS was then extracted to give the final
merged assembly. Completeness of the merged assembly
and individual assemblies were assessed using BUSCO
(Benchmarking Universal Single-Copy Orthologs; Sim~ao
et al. 2015) and the Actinopterygii_odb9 database (supple-
mentary table S2, Supplementary Material online). A
transcript-to-gene map was constructed using CORSET
(Davidson and Oshlack 2014) and the mappings of the
three Pacific bluefin tuna used to construct the final refer-
ence transcriptome.

CDS from the transcriptome were annotated against a
database of teleost species (Astyanax mexicanus, Danio rerio,
Gasterosteus aculeatus, Gadus morhua, Lepisosteus oculatus,
Oreochromis nilotocus, Oryzias latipes, Poecilia formosa,
Tetraodon nigroviridis, Takifugu rubripes, and Xiphophorus
maculatus); protein sequences were downloaded from
the ENSEMBL database in June 2017 (Aken et al. 2017)
using NCBI BlastX (v2.6.0; Altschul et al. 1990). GO terms
were extracted for each using the “biomartr” R package
(Drost and Paszkowski 2017). If ENSEMBL sequences were
not annotated, their protein sequence was annotated by
NCBI BlastP search against the NCBI nr (nonredundant)
database.

Read Alignment
Reads from all individuals were separately mapped against
this reference transcriptome using STAR (v2.5.3a; Dobin
et al. 2013) and the double-pass method, allowing for any
number of hits, and scoring all hits with an equal best map-
ping score as primary. Reads were realigned around indels
using GATK (v3.7; McKenna et al. 2010). Genotypes were
then inferred using samtools and bcftools (v1.5; Li et al.
2009; Li 2011). Bases with a base quality <20 were filtered
using samtools mpileup. Using bcftools call and filter, hetero-
zygous sites with either allele represented by <2 reads were
trimmed, as were sites with high-quality read depth <3, ge-
notype or variant quality <20 and single nucleotide poly-
morphisms (SNPs) within 3 bp of an indel. Resultant vcf
files were converted to multisample fasta files using vcf2fas
(v17072015; https://github.com/brunonevado/vcf2fas. Last
accessed June 16, 2017. Indels were coded as missing data.
IUPAC (International Union of Pure and Applied Chemistry)
ambiguity codes were used for heterozygous sites.

Phylogenetic Reconstructions
Phylogenetic trees were reconstructed using both superma-
trix and summary multispecies coalescent (MSC) tools. For
the MSC tree, transcript trees were inferred for each tran-
script. These were first filtered to remove columns with<10%
occupancy and sequences with >50% gaps (Sayyari et al.
2017). Transcripts that then had sequences from <4 species
were discarded. Trees were then inferred for each using
RAxML (v8.2.10; Stamatakis 2014), with 200 rapid bootstraps

and the GTRGAMMA model of evolution. SH-like
(Shimodaira–Hasegawa-like) node support values were sub-
sequently calculated (Anisimova et al. 2011). Transcript trees
were discarded if the three skipjack tuna individuals (where
sequence data were present) were not monophyletic, to re-
move trees with unrealistic deep coalescences. Transcript
trees with at least one node with SH-like support >10 were
retained, with only the transcript with most nodes with SH-
like support >10 per CORSET cluster retained, in order to
ensure the independence of markers. The species tree was
then inferred using ASTRAL (v5.5.6; Mirarab et al. 2014). Two
runs were carried out with forced species monophyly: one
with poorly supported nodes (SH-like <10) collapsed into
hard polytomies, as recommended by Zhang et al. (2018),
and another where they were not. Gene-tree concordance
values of each primary split, calculated using ASTRAL, in the
first of these trees are reported. These indicate the percentage
of gene trees supporting the species–tree relationship for
each branch within a tree. A further run was carried out
with the hard polytomy data set without forced species
monophyly in order to ensure each species formed mono-
phyletic groups.

Supermatrix-based phylogenetic trees were also in-
ferred. Fixed nucleotides for each species from all the tran-
scripts used in the ASTRAL phylogeny were concatenated.
A maximum-likelihood phylogeny was inferred using
RAxML (v8.2.1) with 200 rapid bootstraps and the
GTRGAMMA model of evolution. A Bayesian phyloge-
netic tree was also inferred using ExaBayes (v1.5; Aberer
et al. 2014). Four runs of three coupled chains were carried
out for 1 million generations (25% as burn-in). In order to
ensure Monte Carlo Markov chains were run long enough
for accurate estimation of posterior means, we ensured
the effective sample size were >200 for all parameters,
alongside a potential scale reduction factor of 1 in order
to assess convergence between chains. To account for the
potential effect of selection, a further Bayesian phyloge-
netic tree was also inferred for concatenated 4-fold degen-
erate sites from the transcript set.

To infer a mitochondrial phylogenetic tree, reads from all
Thunnus individuals were mapped against a reference Pacific
bluefin tuna mitochondrial genome (NCBI accession num-
ber: NC_008455), with Katsuwonus individuals mapped
against a reference skipjack tuna mitochondrial genome
(NC_005316). Reads were mapped using STAR as above ex-
cept allowing a maximum of two hits per read. They were
subsequently genotyped and converted to fasta using sam-
tools and bcftools. This was as above, except using the
bcftools call setting “–ploidy 1,” not using homozygous
blocks. CDS for each of the 13 genes of the mitochondrial
genome for each individual were extracted using the MITOS
webserver (Bernt et al. 2013). These were aligned using
MAFFT (v7.271; Katoh and Standley 2013) and concatenated.
A phylogenetic tree was then inferred, using ExaBayes, as with
the nuclear supermatrix tree. The species identity of all indi-
viduals was verified by NCBI BlastN search of these mito-
chondrial CDS against the NCBI nr database, in addition to
species monophyly in mitochondrial (supplementary fig. S8,

Diversification of Endothermic Tunas . doi:10.1093/molbev/msy198 MBE

91



Supplementary Material online) and nuclear (supplementary
fig. S6, Supplementary Material online) phylogenetic trees.

Test for Species Delimitation
To test for species delimitation between the Atlantic and
Pacific bluefin tuna, we implemented Bayes Factor
Delimitation (BFD*; Leache et al. 2014), implemented in
SNAPP (v1.3.0; Bryant et al. 2012), a package from BEAST
(v2.4.7; Bouckaert et al. 2014). To do this, we generated a
data set containing only Atlantic and Pacific bluefin tuna
individuals, alongside bigeye tuna individuals as outgroups.
We filtered this to include only one biallelic SNP (within the
Pacific and Atlantic bluefin) with minor allele count >1 and
with all individuals present per CORSET cluster. Delimitation
runs were run for 48 steps at a chain length of 200,000 each,
following 50,000 as pre-burn-in, with a gamma lambda prior
of (2, 200). Two models were compared: 1) a model where
individuals of Atlantic bluefin and Pacific bluefin corre-
sponded to only one species, and 2) a model where individ-
uals of Atlantic and Pacific bluefin correspond to two
separate species (the current delimitation). Bigeye tuna was
included as an outgroup in both analyses, designated as a
separate species. Convergence was assessed by two separate
runs of each model converging to within 1 log-likelihood unit.
A Bayes Factor>10 was used to determine significance (Kass
and Raftery 1995), and a posterior probability calculated by
Bayes Factor/(Bayes Factor þ 1).

Timetree Inference
Using the concatenated transcript data set used in the super-
matrix analysis and a fossil calibration, we estimated diver-
gence dates for the Thunnus tuna. A hard-minimum fossil
calibration of 37.8 My was used on the root of the tree based
on the earliest known stem-group Thunnus fossil, T. abchasi-
cus, which has been documented from the mid-Eocene in
Russia (Monsch and Bannikov 2011). A soft-maximum age
calibration of 56 My was used, corresponding to the start of
the Eocene period. MCMCTree (v4.9e; Yang and Rannala
2006) was used for dating analysis. Following a burn-in of
100,000 iterations, Markov chains were sampled every
1,000th iteration until 40,000 trees were sampled, using the
approximate likelihood algorithm. Priors for sigma2 and rgene
were set to G(1, 10) and G(2, 11335) based on substitution
rates inferred using BaseML. As the maximum-likelihood phy-
logenetic tree inferred from the same data set was relatively
clock-like (root-to-tip variance 0.0000003) we used a global
molecular clock to date the tree, following Walker et al.
(2017). Two runs were carried out, with convergence of
mean posterior times assessed, and infinite-site plots used
to assess linearity of data (supplementary fig. S9,
Supplementary Material online).

This dated tree was used to calculate EDGE scores (Isaac
et al. 2007), based on IUCN red list threat-status (GE, as of
February 2018; IUCN 2017) and evolutionary distinctness
(ED) scores calculated in the R package “caper” (Orme
2013). EDGE scores for each species were calculated as follows:
EDGE ¼ ln(1þED) þ GE � ln(2).

Genetic Structure
To assess genetic structure among the eight Thunnus species,
we used an MDS and hierarchical clustering, using
ADMIXTURE (v1.3; Alexander et al. 2009). Each Thunnus in-
dividual was regenotyped not allowing for homozygous
blocks. Resultant vcf files were merged and filtered to include
with at least one SNP, no indels,<5% missing taxa, and minor
allele count >1 using vcftools (v0.1.3.2; Danecek et al. 2011).
Using PLINK (v1.9b; Purcell et al. 2007), SNPs with an R2 value
>0.1 of any other SNP within a 50-bp sliding window were
removed to ensure unlinked SNPs were analyzed.
ADMIXTURE runs were carried out with k values from 1 to
10, with the optimal run assessed using the lowest
ADMIXTURE CV error. MDS analysis was carried out in
PLINK.

Tests for Introgression
To test whether a phylogenetic tree or a phylogenetic net-
work, including hybridization events, best explains the data,
we used a maximum pseudolikelihood approach (Sol�ıs-
Lemus and An�e 2016), implemented within the Julia package
PhyloNetworks (v0.6.0; Sol�ıs-Lemus et al. 2017). Uncollapsed
transcript trees with >10 nodes with SH-like support >80
were used (only the transcript tree with the most such nodes
per CORSET cluster was retained). Tip-based quartet concor-
dance factors were calculated for each set of four individuals
using the readTrees2CF function. Inter- and intraspecific con-
cordance factors were then calculated from these using the
mapAllelesCFtable function. Using SNaQ (Species Networks
apply Quartets), a phylogenetic tree with no hybridization
events was inferred. In order to assess whether the MSC ad-
equately explains gene-tree discordance to this species tree,
we used the TICR test (Tree Incongruence Checking in R;
Stenz et al. 2015), using the “phylolm” R package. A chi-
squared test was used to compare observed concordance
factors with expected concordance factors calculated from
the species tree under the MSC. Lack of significance (P> 0.05)
would indicate that the coalescent tree inferred without in-
trogression events adequately fits the data.

To test whether the mitochondrial genome clustering of
albacore and Pacific bluefin tuna is caused by introgression,
we simulated gene trees under coalescence using “ms”
(Hudson 2002), according to the coalescent units inferred
by SNaQ. These coalescent units were unaltered, as they
were first multiplied by 4, to account for the effective popu-
lation size of the mitochondrial genome being one-fourth of
the nuclear genome (Latta 2006), but then divided by 4, as
coalescent units in SNaQ are defined as generations/effective
population size, whereas in ms they are generations/4 � ef-
fective population size. In total, 100 replicates of 100,000 gene
trees were simulated. The average frequency per replicate
where Pacific bluefin and albacore clustered was used as a P
value, with P< 0.05 suggesting their clustering to be unlikely
due to ILS alone (Buckley et al. 2006).

Detecting Selection
We inferred selection on genetic variants in three groups:
1) the bluefin species; and 2) the warm-water species
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(yellowfin, bigeye, longtail, and blackfin); and 3) the visceral
endotherm species (albacore, the three bluefin species, and
bigeye). As they were monophyletic in the species tree, we
tested for selection on de novo mutation in the warm-water
tuna using the CodeML branch-site test (Zhang et al. 2005),
within PAML v4.9e (Yang 2007). As they were not monophy-
letic, we tested for parallel selection on ancestral variation in
the bluefin tunas and visceral endotherm tunas using a phy-
logenetic genome-wide association study (PhyloGWAS; Pease
et al. 2016), implemented in MVFtools (v0.5.1.3; Pease and
Rosenzweig 2015). Fixed sites for the longest CDS per CORSET
cluster were used for all analyses.

For the CodeML branch-site test, genes whose gene trees
significantly differed from the species tree (SH-test P< 0.05)
and in which the warm-water species were not monophyletic
were discarded. Gene trees were used for those that signifi-
cantly differed, but still had the warm-water species mono-
phyletic. The species tree was used for the remainder of
transcripts. For each CDS, four CodeML runs were carried
out: a null model, where no site allows for x> 1 in the target
branch was compared with three runs of an alternate model,
with an added site class allowing for x> 1, each with differ-
ent starting values of x (0.5, 1, 1.5). Likelihood-ratio tests
between each of these runs and the null were carried out,
with significance inferred if P< 0.05 in all three runs (v2

1).
Gaps in the sequence data were allowed, but significant genes
(P< 0.05) where the associated nonsynonymous variants
were present in only one of the warm-water species were
discarded.

PhyloGWAS assesses whether there is an excess of non-
synonymous variants that are shared by individuals that are
not monophyletic but share a phenotypic trait. Codon sites
from all genes were filtered to remove sites with >2 non-
synonymous variants among the Thunnus, as these may re-
flect multiple changes rather than parallel selection on
ancestral variation. Codon sites with >2 missing taxa were
also filtered. The number of genes containing nonsynony-
mous mutations in the bluefin tunas and visceral endotherm
tunas were calculated using MVFtools. Sites were only
counted in the bluefin analysis if they had sequence data
for each of the three bluefin species alongside the albacore
tuna. Sites were only counted in the visceral endothermy
analysis if they had sequence data for each of the three species
lacking visceral endothermy (the longtail, blackfin, and yel-
lowfin) alongside the bigeye tuna. To assess significance, this
number was compared with the expected number shared
due to ILS alone. To do this, 100,000,000 genes with a single
change were simulated using ms (Hudson 2002) over the
consensus phylogeny, using coalescent units inferred by
SNaQ (these were divided by 4 as SNaQ coalescent units
are generations/effective population size, whereas ms coales-
cent units are generations/4� effective population size). Two
chromosomes (as tuna are diploid) were simulated for one
individual of each species. The P values were the proportion
of the simulated data sets that had at least the same number
of shared substitutions as the observed number, out of a
sample size the same as the number of variable amino acid
sites tested. The number of variable amino acid sites was

counted across all genes tested, including variable amino acids
among species, which were previously filtered out when iden-
tifying fixed amino acids for each species. To allow for the
codons with missing taxa in our data set, the number of sites
in the simulated data set that fit the pattern except for one or
two of the possible missing taxa was also counted, but
weighted by the number of tested codons that had missing
taxa.

GO term enrichment for genes under selection in each
group was assessed using the topGO R package and the
Fisher’s exact test with the “weight01” algorithm, and
P< 0.01 for significance (weight01 P values are deemed ad-
justed; Alexa et al. 2006). GO terms with only one represen-
tative in the significant set were discarded. Zebrafish
orthologs for genes with functions relating to aerobic metab-
olism, which is hypothesized to relate to endothermy in blue-
fin tunas (Blank, Farwell, et al. 2007), were downloaded from
UniProt (UniProt Consortium 2015). This was aligned with
translated CDS from the tuna, using MAFFT (v7.271), and
used to annotate which site the bluefin substitution was at.
The same procedure was used for the warm-water tuna se-
lection genes.

To examine possible functional effect of nonsynonymous
variants, we predicted 3D protein structure for each of the
identified candidate genes using the Phyre2 (Protein
Homology/analogY Recognition Engine v2.0) webserver
(http://www.sbg.bio.ic.ac.uk/phyre2; last accessed May 11,
2018; Kelley et al. 2015), using the “intensive” modeling
mode. Prior to this, amino acids prior to the zebrafish start
codon in the MAFFT alignment were trimmed. The evolution-
ary conservation of each nonsynonymous mutation was iden-
tified using the ConSurf webserver (http://consurf.tau.ac.il/
2016; last accessed May 11, 2018). Slowly evolving regions are
likely to have functional effects. Each amino acid site is there-
fore scored from 1 to 9, where 1 is highly variable and 9 is highly
conserved (Ashkenazy et al. 2016). Effects of each mutation on
protein stability were assessed using the SDM2 (Site Directed
Mutator v2) webserver (http://structure.bioc.cam.ac.uk/sdm2;
last accessed May 11, 2018; Pandurangan et al. 2017). Changes
in electrostatic potential of each protein, which is responsible
for catalytic activity in many enzymes, were measured using
the MutantElec webserver (http://structuralbio.utalca.cl/
mutantelec; last accessed May 11, 2018. Valdebenito-
Maturana et al. 2017). MutantElec assesses whether amino
acid changes significantly increase or decrease electrostatic
potential using a nonparametric Wilcoxon signed-rank test
with a confidence interval of 0.05.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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