This assignment consists of 5 problems:
1. basic exponentiation
2. modular exponentiation
3. generate a Diffie-Hellman keypair, given an order
4. implement a parameter checker that takes as input a candidate set of Diffie-Hellman parameters, and returns a boolean indicating whether paramters are valid
5. given a public key, modulus, and base as inputs, return a generated public key and the shared secret
Here is the template for solution. The solution needs to be in python 3.10 or higher
import typing


def problem1(b: int, e: int) -> int:
    """
    Return base `b` raised to the exponent `e`

    >>> problem1(2, 3)
    8
    """


def problem2(b: int, e: int, m: int) -> int:
    """
    Return base `b` raised to the exponent `e` modulo prime modulus `m`

    >>> problem2(2, 3, 5)
    3
    """


class DHKeyPair(typing.TypedDict):
    """
    A wrapper type representing a Diffie-Hellman keypair, consisting of public
    key `A` and private exponent `a`.

    >>> DHKeyPair(a=1, A=2)
    {'a': 1, 'A': 2}
    >>> DHKeyPair({'a': 1, 'A': 2})
    {'a': 1, 'A': 2}
    """

    A: int
    a: int


def problem3(g: int, p: int) -> DHKeyPair:
    """
    Given a generator `g` and prime modulus `p`, return a valid Diffie-Hellman
    keypair under `p` and `g`. The keypair should be returned a dict with the
    private exponent `a` keyed by `'a'` and the public key `A` keyed by `'A'`.

    Recall that private exopnent `a` is computed as a random integer, and that
    public key `A` is computed as `g^a mod p`.

    # not doctest as output is random
    > problem3(7, 17)
    {'a': 8, 'A': 16}
    > problem3(7, 17)
    {'a': 12, 'A': 13}
    """


def problem4(g: int, p: int, a: int, A: int) -> bool:
    """
    Given a generator `g`, prime modulus `p`, private exponent `a`, and Alice's
    public key `A`, return a boolean indicating whether the parameter set is
    valid.

    Recall that:
        - trivial exponents (i.e. 0, 1) are invalid
        - the generator must me less than the modulus
        - private exponent `a` must be greater than generator `g` and less than
          prime modulus `p`: `g < a < p`.
        - because the public key is computed modulo `p`, it must be less than
          `p`
        - `A` must be computed as `g ^ a mod p`

    >>> problem4(5, 17, 0, 6)
    False
    >>> problem4(20, 17, 3, 6)
    False
    >>> problem4(5, 17, 3, 20)
    False
    >>> problem4(7, 17, 12, 13)
    True
    """


class DHNegotiatedSecret(typing.TypedDict):
    """
    A wrapper type representing a Diffie-Hellman secret, consisting of secret
    `s` and public key `A`.

    >>> DHNegotiatedSecret(s=1, A=2)
    {'s': 1, 'A': 2}
    >>> DHNegotiatedSecret({'s': 1, 'A': 2})
    {'s': 1, 'A': 2}
    """

    s: int
    A: int


def problem5(
    g: int, p: int, B: int, b: typing.Optional[int] = None
) -> DHNegotiatedSecret:
    """
    Given a generator `g`, prime modulus `p`, and Bob's public key `B`, first
    compute a valid Diffie-Hellman keypair for Alice consisting of public key
    `A` and private exponent `a`, using `g` and `p`. Then, using your private
    exponent `a`, compute the shared secret `s`. Return a DHNegotiatedSecret
    dict with your public key `A` keyed by `'A'` and the shared secret `s`
    keyed by `'s'`.

    Recall that Alice computes the shared secret `s` by raising Bob's public
    key `B` to their (Alice's) private exponent `a`, all modulo `p`. As an
    equation, this looks like `s = B^a mod p`.

    Please note that the optional parameter `b` is **not required for your
    solution**, and is only there for use by the auto-grader.

    # not doctest as output is random
    > problem5(5, 17, 9)
    {'A': 4, 's': 16}
    > problem5(5, 17, 9)
    {'A': 10, 's': 2}
    """


