
CS 332/532 – 1G- Systems Programming

HW 3

Deadline: 10/23/2022 Sunday 11:59pm

Objectives
To add additional features to the search program implemented in Project #2.

Description
The goal of this project is to add additional functionality to the search program
implemented in Project #2. In addition to the functionality described in Project #2, the
program must support the following command-line options:

1. -e "<unix-command with arguments>"
For each file that matches the search criteria the UNIX command specified with
arguments must be executed.

2. -E "<unix-command with arguments>" [Graduate Students Only]
The list of files that matches the search criteria must be provided as an argument to
the UNIX command specified.

Note that with the -e option the UNIX command is executed for each file whereas with
the -E option the UNIX command is executed only once but uses all the file names as
the argument. You must use fork/exec/wait to create a new process to execute the
UNIX command.

The UNIX command and any optional arguments are enclosed within double quotes.
The program should support -e or -E options in combination with -s and -f options. You
can assume that the -e or -E options appear after the -s and -f options.

Guidelines and Hints
1. You should use a Makefile to compile and build this project and make sure to

submit the Makefile along with the rest of the source code.
2. You should upload all the source code, Makefile, and a README.txt file to Canvas.

Please do not upload any object files or executable files.

Program Documentation and Testing
1. Use appropriate names for variables and functions.

2. Use a Makefile to compile your program.
3. Include meaningful comments to indicate various operations performed by the

program.
4. Programs must include the following header information within comments:

/*
Name:
BlazerId:
Project #:
To compile: <instructions for compiling the program>
To run: <instructions to run the program>
*/

4. Test your program with the sample test cases provided as well as your own test
cases.

5. You can include any comments you may have about testing in the README.txt file.

Examples
Command Description

$./search -s 1024 -e "ls -l"
List all files with size <= 1024 bytes in the current
directory, and execute the command "ls -l" on each
file (ignore directories)

$./search -f jpg 3 -E "tar cvf
jpg.tar"

List all files that have the substring “jpg” in their
filename or directory name with depth <=3 relative
to the current directory, and creates a tar file named
jpg.tar that contains these files

$./search -s 1024 -f jpg 3 -e "wc
-l"

List all files that have the substring “jpg” in their
filename with depth <=3 relative to the current
directory and size <= 1024, and execute the
command "wc -l" on each file (ignore directories)

Sample Input and Output:

If you have the following directory structure as shown by the output of "ls -lR"
command:

$ ls -R projects
projects:
fread.c fwrite.c project1 project2 project3 project4 read.c write.c

projects/project1:
project1.docx README

projects/project2:
project2.docx README

projects/project3:
project3.docx README

projects/project4:
project4.docx README

Then the output of find without any argument should look like this:

projects
 fread.c
 fwrite.c
 project1
 README
 project1.docx
 project2
 project2.docx
 README
 project3
 project3.docx
 README
 project4
 project4.docx
 README
 read.c
 write.c

It is not necessary that the order of the files are exactly as shown above, but the overall
structure should look similar to the output shown above. You can use the following tar
file to create the directory structure: projects.tar. Download this file and extract the
file using the command:

$ tar xvf projects.tar

Submission Guidelines
Upload the C source code, PDF version of C source code, and README.txt file to
Canvas. Do not include any executable or object files.

Use the following command to create PDFs of your source code.(replace
the <Source_code_File_name> and <Output_Source_code_File_name> with your C
source code file name):

$enscript <Source_code_File_Name>.c -o - | ps2pdf - <Output_Source_code_File_
Name>.pdf

• Use best software engineering practices to design and implement this Project.

• Use functions and organize these functions in multiple files if necessary.

• Use a Makefile to compile and build the multiple files.

• Document you code and include instructions for compiling and executing the
program in the README.txt file.

Grading Rubrics
Description Points

Implementation of parsing the arguments to the search program correctly and
invoking the appropriate function

20
points

Implementation of search that executes the UNIX command with optional arguments
for each matching file using fork/exec/wait

50
points

Implementation of search that lists the files and directories in the specified format
when executed with multiple options (combination of -s, -f and -e)

20
points

Use of Makefile, source code documentation (including README.txt file) 10
points

