
 bank and bank accounts
Class diagram
[image:]
1. Use the Customer class
A customer has:

a name
a SSN (Social Security Number)

The code for this class is already provided.

2. Build the Account class
A bank account has:

"owner": a Customer instance
an amount (float, default value: 0)

 (
1

/

3
)
a method deposit
it receives a float argument: the amount to be deposited. If the argument is negative, raise a
 AttributeError exception.
it adds the deposited amount to the account amount a method withdraw
it receives a float argument: the amount to be withdrawn. If the argument is negative, raise a
 AttributeError exception.
it removes the amount provided from the account a method transfer , to make transfers between accounts
it has two arguments: account and amount
it must raise a TypeError exception if the account is not an instance of Account
the method withdraws amount from the current instance and deposits it into the account a method compute_interest , used to compute the interest over the account
this method does nothing on regular accounts

3. Build child classes
3.1. CreditAccount
The credit account inherits from Account . Its amount is usually negative.
Its constructor receives an additional argument interest_rate (a number between 0 and 100). This is the interest rate in %. Store it in the interest attribute of the class.
The compute_interest method, if the amount is negative:
charges the interest to the account: amount = amount * (100 + interest_rate) / 100 then charges $10 to the account (administration fees)

3.3. SavingsAccount
The savings account inherits from Account .
Its constructor receives an additional argument interest_rate (a number between 0 and 100). This is the interest rate in %. Store it in the interest attribute of the class.
The compute_interest method adds the interest to the account: amount = amount * (100 + interest_rate) / 100
The withdraw method must raise an UserWarning exception if someone tries to withdraw more money
than available on the account.

4. Build the Bank
A bank has a name (received by the constructor)

 create_account : creates an account in the bank. Receives two mandatory arguments

 category : can be either "account", "credit", or "savings"
 owner : a Customer instance
and an optional argument: interest_rate (default value = 0)

credit and savings accounts must use this value for the interest rate
this method creates an account of the specified type, associates it with the provided owner
the method returns the account created, but you need to make sure your bank keeps track of the accounts (you could use a dictionary, or a list)
 compute_interest() : computes interest on all accounts of the bank.

 find_accounts() : receives one argument

first argument is a string: the name of a customer
the method returns the list of account(s) associated with the given customer

Grading rubric
1 mark for each test that passes
3 marks for PEP8 syntax, docstrings, and encapsulation (use of property and setter) TOTAL = 18 mar

Customer.py
class Customer:
 """
 A simple class that represents a customer at the bank.
 """

 def __init__(self, name, ssn):
 if type(name) is not str or len(name) < 2:
 raise AttributeError("Invalid name for the account.")

 if type(ssn) is not str or not ssn.isnumeric():
 raise AttributeError("Invalid SSN for the account.")

 self.name = name
 self.ssn = ssn

image1.png
© Bank
@customer| | names s
o accounts: list or dict

© name: str

o ssn: str o create_account(customer: Customer, category: str)
o find_accounts(name: str)
© compute_interest(): None

o

© Account

© amount: float
© owner: Customer

o withdraw(value: float)
o deposit(value: float)
o transfer(account: Account, value: float)
o compute_interest()

/A

(©creditaccount (©) savingsAccount

o interest: float o interest: float

