
IT361: Information Security LAB

Assignment IV

Course Instructor: Dr. Dibyendu Roy Marks: 20
Instructions: Clearly write your name and roll number on the top of your C code. Program file name should
be YOUR ROLL NO.c

Write a single C code for the following problem. Let Alice and Bob are the two users and they have
agreed on cyclic group (Z∗

p,× mod p) where p = 232 − 5 with the generator g = 2.

1. Alice selects two large prime numbers pa, qa of 32 bits (input).

2. Alice computes na = paqa and xa = ϕ(na).

3. Inside the code Alice finds ea such that gcd(ea, xa) = 1.

4. Inside the code Alice computes da such that eada ≡ 1 mod xa.

5. Alice makes (ea, na) as his public key and (da, pa, qa) as his secret key.

6. Bob selects two large prime numbers pb, qb of 32 bits (input).

7. Bob computes nb = pbqb and xb = ϕ(nb).

8. Inside the code Bob finds eb such that gcd(eb, xb) = 1.

9. Inside the code Bob computes db such that ebdb ≡ 1 mod xb.

10. Bob makes (eb, nb) as his public key and (db, pb, qb) as his secret key.

11. Alice selects a random integer 0 < A < p and computes Diffie-Hellman (DH) public key KA = gA

(input A, print KA).

12. Alice signs on his public key using his RSA secret key and sends signature SA and DH public
key KA to Bob (print SA).

13. Bob selects a random integer 0 < B < p and computes Diffie-Hellman (DH) public key KB = gB

(input B, print KB).

14. Bob signs on his public key using his RSA secret key and sends signature SB and DH public key
KB to Alice (print SB).

15. Alice verifies the SB if verification passes then he computes K = gAB (print K).

16. Bob verifies the SA if verification passes then he computes K = gAB (print K).

17. Alice now selects a message of 64 bits and encrypts the message MA using the below mentioned
Symmetric-Enc algorithm (input MA).

18. Print the above generated ciphertext C (print C).

19. Alice xor the least significant 32 bits of MA with the most significant 32 bits of MA and K to
generate the MAC, MACA (print MACA).

20. Alice sends C,MACA to Bob.

21. Bob decrypts C using K and recovers MA after that verifies the MACA.

22. Print the output from the MAC verification algorithm from Bob’s side.

1

Symmetric-Enc:

It is a 16 round Feistel Network. For a 64-bit plaintext P and a 32-bit key K the encryption will
produce a 64-bit ciphertext. The key-scheduling algorithm and the round function are described below.

1. Key scheduling algorithm will generate the 16 many 32-bit round keys Ki, 0 ≤ i ≤ 15 as follows.

- Ki is the left circular rotation on (S1(Y0)||S1(Y1)||S1(Y2)||S1(Y3)) for i times. Here K =
Y0||Y1||Y2||Y3 and len(Yi) = 8 bits. S1 : {0, 1}8 → {0, 1}8 is the S-box described below and
S1(X) is computed according to the discussion in the class.

2. The round function f is defined as follows f : {0, 1}32 × {0, 1}32 → {0, 1}32.

- f(Ri,Ki) = S(Ri ⊕Ki)

- S : {0, 1}32 → {0, 1}32

- S(X) = (S−1
1 (x0) ∥ S−1

1 (x1) ∥ S−1
1 (x2) ∥ S−1

1 (x3)) where X = x0 ∥ x1 ∥ x2 ∥ x3, each xi
is of 8 bits and S1 : {0, 1}8 → {0, 1}8 is the S-box described is described below. S1(X) is
computed according to the discussion in the class.

S1 :
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16

2

