
UE20CS322
Big
Data
Assignment
2

Implementation
of
Page
Rank
Algorithm
with

Page
Embeddings

This is the second assignment for the UE20CS322 Big Data Course at PES University. The assignment consists of 2 tasks

and focuses on running MapReduce jobs to implement a scenario of page rank that leverages graph embeddings.

Difficulty : Very Hard

The files required for the assignment can be found here.

Assignment
Objectives
and
Outcomes

1. Learn how to run Iterative Map Reduce Jobs and use it for computing the famous Page Rank Algorithm.

2. At the end of this assignment, the student will be able to write and debug Page Rank code using Map Reduce.

Submission
Deadlines

Phase I Submissions : 27/09/2022 11:59 PM IST

Phase II Submissions : 01/10/2022 11:59 PM IST

Exact portal timings will be announced later. Please do not wait until the last moment for submitting. Both Phase I and

Phase II submissions will accept submissions for both the tasks. Phase II submissions will be the final round of

submissions. There will be no extension of submissions dates and time. Please make sure to turn in your submissions

before the due date.

Ethical
practices

Please submit original code only. You can discuss your approach with your friends but you must write original code. All

solutions must be submitted through the portal.

We will perform a plagiarism check on the code and you will be penalised if your code is found to be plagiarised.

Datasets

For this assignment we will be using two datasets. The first dataset consists of nodes that represent pages from berkely.edu

and stanford.edu domains and directed edges represent hyperlinks between them. The second dataset is also a graph

https://drive.google.com/drive/folders/16o95ITJ30qKmOW_FAf61MfQq0JHEMguI?usp=sharing

dataset that contains network of hyperlinks from a snapshot of Google Web Graph from 2002.

The datasets can be downloaded from Berkley-Stanford and Google Web Graph.

Each line of the dataset consists of two values, the source page and the destination page separated by \t .

The pages are denoted using a numerical ID. An edge from x to y indicates a hyperlink on page x to page y . The

dataset may look like the following :

12 6

21 32

60 72

15 3

13 6

49 6

10 11

Software/Languages
to
be
used:

1. Python 3.10.x

2. Hadoop v3.3.3 only

Submission
Link

Portal for Big Data RR Campus Assignment Submissions.

Portal for Big Data EC Campus Assignment Submissions.

Submission
Guidelines

You will need to make the following changes to your mapper and reducer scripts to run them on the portal

1. Include the following shebang on the first line of your code

#!/usr/bin/env python3

2. Convert your files to an executable

chmod +x mapper.py reducer.py

https://snap.stanford.edu/data/web-BerkStan.txt.gz
https://snap.stanford.edu/data/web-Google.txt.gz
https://www.bigdata-rr.tech/
https://www.bigdata-ec.tech/

3. Convert line breaks in DOS format to Unix format (this is necessary if you are coding on Windows - your

code will not run on our portal otherwise)

dos2unix mapper.py reducer.py

Task
Specifications

The following graph will be used as an example to explain the sample input and outputs.

Task
1

Problem
Statement

Converting the nodes in the input dataset to Adjacency List Representation using Map Reduce.

Dataset to be used for this task is Berkley-Stanford.

Description

Write Mapper and Reducer scripts that reads the input dataset through stdin processes it and generates the adjacency

list representation of the input graph. Alongside, you must also generate the initial page ranks for all the nodes that have

out going edges in the graph.

The mapper is responsible for reading input dataset through stdin , processing the input and generating intermediate

key value pairs. The reducer then takes in these key value pairs through stdin and writes the adjacency list to HDFS.

https://snap.stanford.edu/data/web-BerkStan.html

The reducer shall also write the initial page rank to a file stored locally.

Input
Format

The Mapper file takes in the input dataset through stdin . The input data may not be sorted, but it will be grouped by

nodes. The Reducer takes in the intermediate key value pairs as input through stdin and a command line argument

that specifies the absolute path to w file. The w file is stored locally and contains the initial page ranks for all the

source nodes in the adjacency list. As a preprocessing step, we would like you to make mapper ignore all those lines that

start with a # .

Output
Format

Display each node in the network along with its adjacent nodes. The output from the reducer may look like the following.

The separator between the from_node_id and list_of_adj_nodes has to be '\t' . The output should be

sorted in lexicographical order of from_node_id .

from_node_id list_of_adj_nodes

The initial page ranks should be written locally to a new file called w (to be strictly followed). The values are comma

separated and newline delimited. The output should be sorted in lexicographical order of node .

node,pagerank

Implementation
Guidelines

1. The adjacency list should be written to HDFS, and the page rank vector should be written locally in a file called

w .

2. The path to the w file will be passed as a command line argument to the reducer file.

3. Never load the whole dataset into memory. It is gauranteed that loading the whole dataset to memory will exceed

memory limits.

4. It is possible to generate the adjacency list without explicitly creating the adjacency list in memory. Your

solutions must have O(1) Space Complexity. If your solution has higher Space Complexity, then your solution

will mostly likely exceed either time limits or memory limits.

5. You are not allowed to use any sorting functions in your sripts.

6. Time Limit for this task would be 30s. Please ensure your code runs on the complete dataset under 30s. If your

code takes more than 30s, you will get a TLE and 0 marks will be given.

7. Exceeding memory limits, will cause our containers to crash. Repeating such errors would result in the team

being blacklisted for few hours.

Helpful
Commands

You are required to use Hadoop to run your codes. Using the python commands for this assignment will result in wrong

answer.

Kindly add your datasets to HDFS using the following command :

hdfs dfs -put /path_to_dataset_on_local_disk /path_in_HDFS

Make your scripts executables by using :

sudo chmod +x mapper.py reducer.py

Commands to execute the mapper and reducer in hadoop would be as shown below :

hadoop jar $HADOOP_HOME/share/hadoop/tools/lib/hadoop-streaming-3.3.3.jar \

-mapper "/absolute_path_to_mapper.py" \

-reducer "'/absolute_path_to_reducer.py' '/absolute_path_to_w'" \

-input "/path_to_dataset_on_HDFS/dataset.txt" \

-output "/path_to_output_on_HDFS"

Note : Replace dataset.txt with the actual filename of the dataset. Also replace path_to_streaming.jar if

you have the jar file stored somewhere else.

Example

1. Input network

1 3

2 1

2 4

4 5

4 3

5 3

4 1

2. w file containing initial page ranks, written locally

1,1

2,1

4,1

5,1

3. Output file containing adjacency list, written to HDFS

1 [3]

2 [1, 4]

4 [5, 1, 3]

5 [3]

Note that the nodes in the adjacency list need to be in the order that Hadoop returns. The nodes must not be

sorted manually.

Task
2

Problem
Statement

Implementing the famous Page Rank Algorithm using Iterative Map Reduce Jobs.

The dataset to be used for this task is Google Web Graph

Description

In this task you will be using the code developed in the first task to generate the adjacency list for Google Web dataset.

The dataset will be stored in HDFS in the form of adjacency list representation of the graph. You are required to rerun

your Task 1 code to generate the adjacency list for the Task 2 dataset.

Once the adjacency has been created and stored in HDFS, Task 2 requires you to use that adjacency list as input to Mapper

file along with Page Embeddings for the same and the w file and generate intermediate key value pairs for the reducer.

The reducer then takes in these key value pairs and computes the ranks and writes the page ranks to a new w file. This

new w file must also contain pagerank for the nodes with no outgoing links as well. The page_embeddings stores

the embeddings for each page in the graph. This embeddings is a vector of size 6 .

The input to the mapper file would be the adjacency list taken from stdin and command line arguments - path to w

file and page_embedding file in the same order.

https://snap.stanford.edu/data/web-Google.txt.gz

The mapper will read the adjacency list , w file and the page_embeddings and the reducer will compute the

new page ranks based on the given equations.

(1) of nodes pointing to p

where,

(2)

where is the previous rank of p , p is a node pointing to q , and

(3)

where and are the vectors for page p and page q respectively which can be obtained from the

page_embeddings file.

Implementation
Guidelines

1. We will provide a bash script that will perform the following operations:

Mapper reads the adjacency list , w and page_embeddings file and computes

contributions

The adjacency list is read from HDFS

The page_embeddings and w file are read locally, the paths to which are provided as command

line arguments

Each page’s embedding is a vector of size 6 , and this size will be fixed for all testcases

Reducer computes new page ranks and writes output to w1

If values of w and w1 are nearly similar (i.e, has reached convergence), exit

Else:

Delete w and rename w1 to w

Redo from step 1

2. Reaching convergence means that the difference between the updated page ranks and the previous for every page

should be < CONVERGENCE_LIMIT

3. The value of CONVERGENCE_LIMIT will be decided by the bash script.

4. All ranks are to be rounded off to 2 decimal places. The rounding off should only be done while printing to

STDOUT and not during computation.

Rank(p) = 0.34 + 0.57 Contribution ∑

Contribution(p, q) =

Numberofoutgoing linksfrom p

Rank (p).Similarity(p,q)′

Rank (p)′

Similarity(p, q) =

∣ | + ∣ | - .p 2 q 2 p q

 . p q

 p q

Similarity
Function
Implementation

In this section we will give a brief idea about how we would like you to implement the similarity function. This is done to

ensure that we have a consistent implementation of similarity function. The idea discussed below takes few ideas from

loop optimizations when calculating dot products which ensures that your implementation is as fast as possible.

Loop Optimization

Loop Optimizations are widely used when we want to reduce the number of times a loop iterates. The way python loops

works makes using loops inefficient. Python packages the loop condition and the loop body and passes it to C for

execution during runtime. This adds a lot of unnecessary overhead to your code. One way to mitigate this is to make the

loop body execute more iterations at once. This technique is called as loop unrolling. Below is a small example on how to

implement loop unrolling.

Let's say we are summing up 1000 numbers thats stored in a list. The code for doing that without using loop unrolling

would be as follows.

n = 1000

numbers = list(range(0,n))

sum = 0

i = 0

while i < n:

 sum += numbers[i]

 i += 1

print(sum)

This method works fine when n is smaller. But when n becomes larger, python loop overhead becomes a major

bottleneck. To solve this we use loop unrolling. The following code shows to sum up the same 1000 numbers using loop

unrolling technique.

n = 1000

numbers = list(range(0,n))

sum = 0

i = 0

kernel_size = 4

bound = n - kernel_size + 1

https://en.wikipedia.org/wiki/Loop_unrolling

while i < bound:

 sum += numbers[i]

 sum += numbers[i+1]

 sum += numbers[i+2]

 sum += numbers[i+3]

 i += kernel_size

while i < n:

 sum += numbers[i]

 i += 1

print(sum)

In the above code, we have used loop unrolling to reduce the loop packaging overhead by increasing the loop body.

Instead of performing a single iteration in loop body, we perform 4 iterations in a single body. More specifically, we

perform kernel_size worth of iterations. This kernel_size becomes a tuning parameter that needs to be

optimized for the problem statement at hand. The second loop is used to handle the edge cases where the numbers are not

divisible by kernel_size . We calculate the bound upto which we can move at strides of kernel_size and loop

only upto that bounds. The remaining elements must be summed up normally. Thus we need to tune kernel_size so

that we minimise the number of iterations of the second loop.

Similarity Function

We are using Jaccard Similarity function which is described previously. Here the input parameters to the similarity

function are two vectors p and q . Both these vectors are of size 6 . In real world, these vectors could be of much

higher dimensions. Hence we would like you to use loop unrolling that you learnt above while computing the dot products

of p and q . Vector p is the page_embeddings of the source vertex in the adjacency list. Vector q is the

page_embeddings of each node in the adjacency_list[source_vertex] .

You need to apply loop unrolling techinque described above while computing the dot products of p and q . You also

need to apply this technique while calculating the Norm of the vectors p and q . Another optimization we would like

you to perform is as follows. Notice that we are calculating the Norm of p for every node in the

adjacency_list[p] . If the length of list is huge, then we will spend a lot of time computing the same Norm of p .

It would be ideal if we could cache the value of Norm of p and use the same value in subsequent iterations. Summing

everything up, we would like to use the following structure when implementing your similarity function.

def similarity(p, q, cache):

Perform some initializations as required

Calculate the correct bounds using appropriate kernel_size

(think about how big the size of p is to determine the ideal value).

if cache is None:

 # Compute Dot product, Norms of p and q using loop unrolling.

 # (Note you can compute everything in one loop unrolling segment).

 cache = Norm of p

else:

 # Compute Dot product, Norm of q using loop unrolling.

 # (Note you can compute everything in one loop unrolling segment).

Using the cache and Norm of q and the dot products, calculate similarity

return similarity, cache # pass the same cache again in subsequent calls.

When the source vertex changes, we need to clear our cache and recompute Norm of p as p is a new vertex.

Note : If you don't follow these steps, your submission will likely be exceeding time limits.

Input
Format

The mapper will receive two command line arguments: the absolute path to the w file and the absolute path to the

page_embeddings file. The adjacency list must be taken through stdin .

Output
Format

For each page in the network, display the page’s ID along with its updated page rank on a single line. The values are

comma separated and newline delimited. The output should be sorted in lexicographical order of node .

node,pagerank

Helpful
Commands

You are required to use Hadoop to run your codes. Using the python commands for this assignment will result in wrong

answer.

Kindly add your datasets to HDFS using the following command :

hdfs dfs -put /path_to_dataset_on_local_disk /path_in_HDFS

Make your scripts executables by using :

sudo chmod +x mapper.py reducer.py

Brief Explanation on how to run iterative MR Job. This section will explain the different parts of iterate-

hadoop.sh file.

#!/bin/sh

CONVERGE=1

ITER=1

rm w w1 log*

$HADOOP_HOME/bin/hadoop dfsadmin -safemode leave

hdfs dfs -rm -r /task-*

Performs some basic initializations by setting CONVERGE=1 and ITER=1 . CONVERGE tells whether we have

converged or not and ITER specifies the current iteration of MR job. Then on the last few lines we remove the previous

w, w1 & log files.

Now we execute Task 1. Remeber that you need to use the Google dataset for this. The following snippet is for

demonstration purposes only. Don't forget to update the paths in the following command accordingly.

$HADOOP_HOME/bin/hadoop jar $HADOOP_HOME/share/hadoop/tools/lib/hadoop-*streami

ng*.jar \

-mapper "'LOCAL_PATH_to_Task1_Mapper_file'" \

-reducer "'LOCAL_PATH_to_Task_1_Reducer_file' 'LOCAL_PATH to_w_file'" \

-input /HDFS_PATH_to_input.txt \

-output /task-1-output

Once we have the adjacency list from Task 1, we are ready to start with Task 2.

while ["$CONVERGE" -ne 0]

do

 echo "############################# ITERATION $ITER ###################

##########"

 $HADOOP_HOME/bin/hadoop jar $HADOOP_HOME/share/hadoop/tools/lib/hadoop-

streaming.jar \

 -mapper "'LOCAL_PATH_to_Task_2_Mapper_file' 'LOCAL_PATH_to_w_file' 'LOC

AL_PATH_to_page_embeddings_JSON_file'" \

 -reducer "'LOCAL_PATH_to_Task_2_Reducer_file'" \

 -input HDFS_PATH_to_input \

 -output /task-2-output

 touch w1

 hadoop dfs -cat /task-2-output/part-00000 > "LOCAL_PATH_to_current_dire

ctory/w1"

 CONVERGE=$(python3 LOCAL_PATH_to_current_directory/check_conv.py $ITER>

&1)

 ITER=$((ITER+1))

 hdfs dfs -rm -r /task-2-output/

 echo $CONVERGE

done

The explanation for the above snippet is as follows. We loop until we have not converged. In each iteration, we schedule a

new MR Job by passing the appropriate mapper and reducer files. The output of the MR Job would be stored in HDFS.

This output would be the new w file with updated page ranks. We then copy this file to a new local file w1 . Both the

files are then passed to a python script that checks if the ranks for pages have converged. If ranks have converged we stop

the iteration and if not converged we go to the next iteration. Finally, before we start our next iteration, we need to remove

the output folder in HDFS.

Note : The above snippets are only for demonstration. You are required to change iterate-hadoop.sh script. You

need to update all the paths to mapper and reducer files accordingly. You are also required to update the paths to -

input and -output and other commands that use the output paths. By now, we hope that you have a fairly good

understanding of how HDFS and Hadoop works and you are expected to change the paths in script file by yourselves.

Once you have identified and modified the changes that need to be done in the iterate-hadoop.sh file, you can

exceute Task 2 by the following command :

bash iterate-hadoop.sh

Example

Consider the following to be the input page_embeddings for the provided sample network with 5 pages.

{

 "1": [

 -0.5937666,

 0.684082,

 -0.5772033,

 0.3481369,

 0.0965215,

 0.3667577

],

 "2": [

 0.7946288,

 -0.4162117,

 0.1517516,

 -0.4744227,

 -0.193617,

 0.3375438

],

 "3": [

 -0.8574042,

 0.2909393,

 0.745526,

 0.5061621,

 -0.1202947,

 0.392672

],

 "4": [

 -0.3609459,

 -0.0422608,

 -0.9533574,

 -0.4942852,

 0.1140913,

 0.4222589

]

 "5": [

 0.7639189,

 0.4191339,

 -0.1799131,

 -0.0183615,

 0.4972066,

 0.961261

]

}

Attached below are the initial page ranks for the provided network.

1,1

2,1

4,1

5,1

Here is the adjacency list

1 [3]

2 [1, 4]

4 [5, 1, 3]

5 [3]

The above adjacency list can be converted to the following matrix M where M[i][j] stores the initial

contribution of page i to page j before the similarity scores have been multiplied.

page 1 page 2 page 3 page 4 page 5

page 1 0 0 1 0 0

page 2 0.5 0 0 0.5 0

page 3 0 0 0 0 0

page 4 0.33 0 0.33 0 0.33

page 5 0 0 1 0 0

As mentioned in equation 3 , the expected similarity matrix S will look like this, where S[i][j] is the similarity

between pages i and j using the vectors obtained from the page_embeddings file.

page 1 page 2 page 3 page 4 page 5

page 1 1.0 -0.26 0.22 0.34 0.11

page 2 -0.26 1.0 -0.2 -0.02 0.25

page 3 0.22 -0.2 1.0 -0.14 -0.09

page 4 0.34 -0.02 -0.14 1.0 0.11

page 5 0.11 0.25 -0.09 0.11 1.0

Further, we can obtain the final contribution matrix C where C[i][j] contains the contribution M[i][j]

multiplied by S[i][j] .

page 1 page 2 page 3 page 4 page 5

page 1 0 0 0.22 0 0

page 2 -0.13 0 0 -0.01 0

page 3 0 0 0 0 0

page 4 0.112 0 -0.046 0 0.036

page 5 0 0 -0.09 0 0.0

Replacing the values of p and q as as page 2 and page 1 respectively in the equation 2 , we obtain the initial

contribution of page 2 to page 1 as the following:

Initial page rank of page 2 : 1

Number of outgoing links from page 2 : 2

Initial contribution = 1/2 = 0.5

Multiplying the initial contribution of page 2 to page 1 with the similarity score between the two pages obtained

from matrix S , we get the complete contribution of page 2 to page 1 as the following:

Initial contribution = 1/2 = 0.5

Similarity between page 2 and page 1 = -0.26

Complete contribution = -0.13

The above process can be repeated to generate the values in all the cells of the matrices M , S and N .

Hence, the final page rank of page 2 is given by equation 1 where,

New page rank of page 2 after one iteration = 0.34 + 0.57 x (contribution of None) = 0.34 + 0.57 x (0) = 0.34

Here, it is 0.57 x (contribution of None) as page 2 has no incoming edges

The updated page ranks are calculated for all pages to obtain the following result in the w1 file.

1,0.33

2,0.34

3,0.39

4,0.33

5,0.36

Note that node 3 is also present in the new pagerank w1 file. You are required to calculate the page rank for nodes with

no outgoing links. The page rank for all nodes will converge to a value after performing the above steps for some

iterations.

Good Luck!

