
COL106

Release date: 2022/09/04

Programming Assignment 2

Deadline: 2022/09/18 23:00

Problem Statement

Inspired by the surprising connection between the number of collisions and the number π, we would like
to solve a more general problem – only computationally. Consider a set of n point objects located in a
gravity-free one-dimensional universe, where for i ∈ {0, . . . , n− 1}, the i’th object has mass mi ∈ R, and at
time t = 0, it is located at position xi ∈ R and has velocity vi ∈ R. Assume that the objects are numbered
from left to right, that is, x0 < x1 < · · · < xn−1. Given this initial conditions, the objects undergo several
collisions over time and eventually move away from one another. Recall that since there is no external force
involved, by Newton’s law, the total momentum of the objects is conserved during every collision. Assume
that each collision is elastic, and therefore, kinetic energy is conserved too. Also, note that no two objects
can ever “cross” each other, and therefore, collisions can happen only between objects i and i+ 1, for some
i ∈ {0, . . . , n− 2}.

We represent a collision by a tuple of a real number, an integer, and another real number. The tuple
(t, i, x) represents a collision happening at time t between objects i and i + 1 at location x. Given a list of
masses, a list of initial positions, and a list of initial velocities, each having the same size n, our goal is to
enumerate the resulting collisions in a chronological order. Ties between collisions happening at the same
time must be broken from left to right. For example for i < i′, if at time t, object i collides with i + 1 at
location x, and i′ collides with i′ + 1 at location x′, then the collision (t, i, x) must precede (t, i′, x′). You
may assume that the input is such that no more than 2 objects collide at the same time and the same place.

Your task is to write a Python function listCollisions that takes the following five arguments:

1. M: a list of positive floats, where M[i] is the mass of the i’th object,

2. x: a sorted list of floats, where x[i] is the initial position of the i’th object,

3. v: a list of floats, where v[i] is the initial velocity of the i’th object,

4. m: a non-negative integer,

5. T: a non-negative float,

and returns a list of collisions in chronological order that ends as soon as the first m collisions happen or
time reaches T (whichever earlier). If the input results in fewer than m collisions and the last collision
happens before time T , the list returned must contain all collisions in chronological order. Recall that we
are representing each collision by a 3-tuple, as mentioned earlier. Round the t and x values of collisions to
4 decimal digits. (However, note that you should still use the exact values, rather than the rounded ones,
in your subsequent calculations to avoid accumulating errors.) You may assume that the lists M, x, v have
the same size. Identify all the necessary data structures and implement their methods from scratch. For full
credit, your function listCollisions must run in time O(n+m log n).

Here is a helpful reference: the formula to find velocities after an elastic collision, given the masses of
two colliding objects and their velocities before collision.

Submission Specifications

Submit a single file named a2.py. Your submitted file must contain a function listCollisions(M,x,v,m,T)

that takes three lists of floats, an integer, and a float as arguments. The function must return a list of 3-tuples,
each representing a collision.

Example Test Cases

>>> listCollisions([1.0, 5.0], [1.0, 2.0], [3.0, 5.0], 100, 100.0)

[]

>>> listCollisions([1.0, 1.0, 1.0, 1.0], [-2.0, -1.0, 1.0, 2.0], [0.0, -1.0, 1.0, 0.0], 5,

5.0)

https://www.youtube.com/watch?v=jsYwFizhncE
http://hyperphysics.phy-astr.gsu.edu/hbase/colsta.html
http://hyperphysics.phy-astr.gsu.edu/hbase/colsta.html


[(1.0, 0, -2.0), (1.0, 2, 2.0)]

>>> listCollisions([10000.0, 1.0, 100.0], [0.0, 1.0, 2.0], [0.0, 0.0, -1.0], 6, 10.0)

[(1.0, 1, 1.0), (1.505, 0, 0.0), (1.6756, 1, 0.3377), (1.7626, 0, -0.0001), (1.8163, 1,

0.2080), (1.8533, 0, -0.0002)]

>>> listCollisions([10000.0, 1.0, 100.0], [0.0, 1.0, 2.0], [0.0, 0.0, -1.0], 100, 1.5)

[(1.0, 1, 1.0)]


