
ENCE 650

HOMEWORK #2 -- Fall 2022

The reaction of chemical **A** is being investigated. **A** can react to 4 different products via four independent reactions.

Reaction	Reaction	Rate Constant	
	Order	Value	Units
В	0	1.2x10 ⁻⁶	mole/(L-min)
D	0	0.8×10^{-6}	mole/(L-min)
Е	1	0.021	min ⁻¹
F	2	52	L/(mole-min)

Due: Sept. 13

- 1. The reaction of **A** is evaluated in a batch reactor. The initial concentration of A is 10⁻³ M. Plot the concentration of **A** in the reactor as a function of time, up to 80 minutes. Find the concentration of **A** at 80 minutes.
- 2. A compound that shuts down Reaction F is added to the reactor; the other reactions are unaffected. Plot the concentration of **A** in the batch reactor as a function of time on the same plot as Problem #1. Find the concentration of **A** at 80 minutes.
- 3. Discuss the differences in the two plots and why/how they appear as they do.
- 4. The reaction of **A** is evaluated in a steady state CMFR, volume of 1000 L, flow rate of 20 L/min, influent = 10⁻³M **A** only. Find the steady state concentrations of **A**, **B**, **D**, **E**, and **F** in the reactor effluent using the rate constants in the table above.
- 5. Discuss your results from Problems #4.
- 6. What value of k_B is necessary to keep the concentration of **B** below $5x10^{-5}$ M in the effluent of Problem #4?