
Indian Institute of Information Technology Kalyani
MTAI 112 Lab Assignment - 6

Subject: Advanced Data Structures and Algorithms (MTAI 112) Marks: 10
Instructor-In-Charge(s): Dr. SK Hafizul Islam & Dr. Sanjoy Pratihar Topics: Disjoint-Set
Assignment Out: 28/08/2022 (8:00 P.M.) Submission: 03/09/2022 (5:00 P.M.)

Instructions: [1]. Follow the algorithms discussed in the lecture classes, otherwise, you will be awarded
zero (0) mark. [2]. Submission Procedure: Submit in Google Classroom (https://meet.google.com/
shx-edpt-mtp, Code: 6n2ubsk). [3]. Write your own C/C++ Program code and do not copy from
other sources. If your code is copied from other sources, you will be awarded to zero (0) mark.
[4]. Name of file should be “MTAI112-i[Your Registration Number].extension”. Example: MTAI112-
1[824].c/MTAI112-1[824].txt. Here i indicate the assignment number. If you submit the assignment with
different name, you will be awarded to zero (0) mark.

Q1. Write a C/C++ program to implement “MAKE-SET”, “FIND-SET”, and “UNION” operations for
Disjoint-Set Data Structure using (i) Union-by-size, (ii) Union-by-rank with Path compression.
With this program, you may also find the number of connected components for a disconnected graph.
The manu of the main() is as follows:

printf(“How many disjoint set you want to create?”);
scanf(“%d”,&n);
makeset(n);
printf(“%d number of makeset operations are executed”);
printf(“To stop Union operation, press -1”);
while(t!=-1)

{
printf(“Enter the value of t”);
scanf(“%d”, &t);
if(t!=-1)

{
printf(“Enter i and j to perform Union(i,j) operation”);
printf(“I = ”);
scanf(“%d”, &i);
printf(“J = ”);
scanf(“%d”, &j);
munion(i,j);
printf(“UNION(%d,%d) is finished”, i,j);

}
}

printf(“Do you want to find the connected components”);
printf(“Press ’1’ for YES or, ’0’ for NO”);

scanf(“%d”, &flag);
if(flag==1)

{
for(i=1;i<=n;i++)

1



{
if(findset(i)==i)

count=count+1;
}

printf(“The number of connected component is %d”, count);
}

else
{

printf(“We do not want to find the connected components”);
}

return 0;
}

(a) Write a function void makeset(int v) to create a singleton disjoint sets Sv = {v}. You may execute
this function for n times to create n disjoint sets S1 = {1}, S2 = {2}, · · · , Sn = {n}, here parent[i]=i
(parent of element i is itself).

(b) Write a function int findset(int v) to find the parent of the element v.

(c) Write a function int munion(int u, int v) to find the union of two disjoint sets represented by u and v.

2




