Instructions:

SN

Write your own C/C++ Program code

Q1. Write a C/C++ program to implement “MAKE-SET”, “FIND-SET”, and “UNION” operations for
Disjoint-Set Data Structure using (i) Union-by-size, (ii) Union-by-rank with Path compression.
With this program, you may also find the number of connected components for a disconnected graph.
The manu of the main() is as follows:

printf(“How many disjoint set you want to create?”);
scanf(“%d”,&n);
makeset(n);
printf(“%d number of makeset operations are executed”);
printf(“To stop Union operation, press -1”);
while(t!=-1)
{

printf(“Enter the value of t”);

scanf(“%d”, &t);

if(t!=-1)

{

printf(“Enter i and j to perform Union(i,j) operation”);

printf(“I = );
scanf(“%d”, &i);
printf(“J = 7);

scanf(“%d”, &j);
munion(i,j);
printf(“UNION(%d,%d) is finished”, 1,j);

}

printf(“Do you want to find the connected components”);
printf(“Press 1’ for YES or, '0’ for NO”);
scanf(“%d”, &flag);
if(flag==1)
{

for(i=1;i<=n;i++)



if(findset(i)==i)
count=count+1;

}

printf(“The number of connected component is %d”, count);

else

printf(“We do not want to find the connected components”);

}

return 0;

}

(a) Write a function void makeset(int v) to create a singleton disjoint sets S, = {v}. You may execute

this function for n times to create n disjoint sets S; = {1}, So = {2}, ---, S, = {n}, here parent [i]=i
(parent of element i is itself).

(b) Write a function int findset(int v) to find the parent of the element v.

(c) Write a function int munion(int u, int v) to find the union of two disjoint sets represented by u and v.






