Department of Mathematics, IISc Bangalore, Prof. Dr. D. P. Patil NPTEL — LA, July–Oct 2022 (Repeat)

NPTEL— Linear Algebra, July–Oct 2022 (Repeat)

Week 5

Exercise Set 5 : Dimension of vector spaces

Submit solutions of the ANY TWO blue coloured [∗]Exercises ONLY

Let K be arbitrary field and let K denote either the field R or the field C .

*****5.1** Let *n* ∈ \mathbb{N} , *n* ≥ 2. Determine whether or not the vectors

(a) $(1,1,\ldots,1), (1,2,1,\ldots,1), \ldots, (1,\ldots,1,n)$ form a basis of \mathbb{R}^n (resp. \mathbb{Q}^n).

(b) (−(*n*−1),1,...,1),(1,−(*n*−1),1,...,1), ... ,(1,...,1,−(*n*−1)) form a basis of R*ⁿ* $(\text{resp. } \mathbb{Q}^n)$.

5.2 Let *K* be a finite field with *q* elements.

(a) The multiples $m \cdot 1_K$, $m \in \mathbb{Z}$, form a subfield K' of K .

(b) There exists a smallest positive natural number p such that $p \cdot 1_K = 0$. Moreover, it is prime (and is called the c h a r a c t e r i s t i c of K — denoted by Char K). The subfield *K*^{\prime} ⊆ *K* contains exactly *p* distinct elements $0, 1_K, \ldots, (p-1)1_K$.

(c) Show that $q = p^n$ with $n := \text{Dim}_{K'}K$. (Remark: *The number of elements is a finite field is a power of a prime number.* Conversely, for a given prime-power *q*, there exists (essentially unique) field with *q* elements.)

5.3 Let $\omega \in \mathbb{R}_+^{\times}$ be a fixed positive real number. For $a \in \mathbb{R}$ and $\varphi \in \mathbb{R}$, let $f_{a,\varphi} : \mathbb{R} \to \mathbb{R}$ be the function defined by $t \mapsto a \sin(\omega t + \varphi)$ and let $W := \{f_{a, \varphi} \mid a, \varphi \in \mathbb{R}\}\.$ Then *W* is a R-subspace of the R-vector space $\mathbb{R}^{\mathbb{R}}$ of all R-valued functions on R.

(a) Find a R-basis of the R-subspace *W*. What is the dimension $\text{Dim}_{\mathbb{R}}W$?

(Hint: The functions $t \mapsto \sin \omega t$ and $t \mapsto \cos \omega t = \sin(\omega t + \pi/2)$ form a basis of *W*.

— Remark: Elements of *W* are called harmonic oscillations with the circular f r e q u e n c y ω .)

(b) Show that every $f \neq 0$ function in *W* has a unique representation

 $f(t) = a\sin(\omega t + \varphi), \quad a > 0 \quad \text{and} \quad 0 \leq \varphi < 2\pi.$

(**Remark**: This unique *a* is called the amplitude and φ is called the phase angle of *f*. The zero function has the amplitude 0 and an arbitrary phase angle.)

(c) From the amplitudes and the phase angles of two harmonic oscillations *f* and *g*, compute the amplitudes and the phase angles of the functions $f \pm g$.

5.4 Let *V* be a *K*-vector space of dimension $n \in \mathbb{N}$.

(a) If H_1, \ldots, H_r are hyper-planes in *V*, then show that $\text{Dim}_K(H_1 \cap \cdots \cap H_r) \geq n-r$.

(b) If $U \subseteq V$ is a subspace of codimension r, then show that there exist r hyper-planes H_1, \ldots, H_r in *V* such that $U = H_1 \cap \cdots \cap H_r$.

D. P. Patil / IISc **The Team of The Team of Team 1** and 1 a

5.5 Let *K* be a field and let $a_0, \ldots, a_m \in K$, $a_m \neq 0$. Show that the subset

 $V(a_0,...,a_m) := \{(x_n)_{n \in \mathbb{N}} \in K^{\mathbb{N}} \mid a_0x_n + a_1x_{n+1} + \cdots + a_mx_{n+m} = 0 \text{ for all } n \in \mathbb{N}\}\$

is a subspace of $K^{\mathbb{N}}$ of the dimension *m*. (Hint: Let $e_n := (\delta_{i,n})_{i \in \mathbb{N}}$, $n \in \mathbb{N}$ and $s : K^{\mathbb{N}} \to K^{\mathbb{N}}$, $e_n \mapsto e_{n+1}, n \in \mathbb{N}$, denote the s h ift operator on $K^{\mathbb{N}}$. Then $(x_n)_{n \in \mathbb{N}} \in V(a_0, \ldots, a_m)$ if and only if $(x_n)_{n \in \mathbb{N}} \in \text{Ker } \alpha(s)$. Moreover, the operator $\alpha(s) : K^{\mathbb{N}} \to K^{\mathbb{N}}$ is surjective and the map Ker $\alpha(s) \to K^m$, $(x_n)_{n \in \mathbb{N}} \mapsto (x_0, x_1, \ldots, x_{m-1})$ is an isomorphism of *K*-vector spaces.

 $-$ **Remark :** We say that a sequence $(x_n)_{n \in \mathbb{N}} \in K^{\mathbb{N}}$ satisfy the (linear) recursion equation with (recursion) polynomial $\alpha(X) = a_0 + a_1X + \cdots + a_mX^m \in K[X]$ if the sequence $(x_n)_{n \in \mathbb{N}} \in V(a_0, \ldots, a_m)$. If *K* is algebraically closed (for example, if $K = \mathbb{C}$), then one can also find a *K*-basis of $V(a_0, \ldots, a_m)$ in by using the zeros of the polynomial $\alpha(A)$.)

***5.6** Let $x_1 = (a_{11}, \ldots, a_{1n}), \ldots, x_n = (a_{n1}, \ldots, a_{nn})$ be elements of \mathbb{K}^n with

$$
|a_{ii}| > \sum_{j=1, j\neq i}^{n} |a_{ji}| \quad \text{for all } i = 1, \dots, n.
$$

Show that x_1, \ldots, x_n is a basis of \mathbb{K}^n .

(Hint: It is enough to show the linear independence of x_1, \ldots, x_n . If $b_1x_1 + \cdots + b_nx_n = 0$ with $|b_i| \leq 1$ for all *i* and $b_{i_0} = 1$ for some *i*₀. This already contradicts the give condition for *i*₀.)

5.7 Let *V* be a finite dimensional *K*-vector space and let *U* be a subspace of *V*. Let u_1, \ldots, u_m be a basis of *U* and let $u_1, \ldots, u_m, u_{m+1}, \ldots, u_n$ be an extended basis of *V*. Show that $x = a_1u_1 + \cdots + a_mu_m + b_{m+1}u_{m+1} + \cdots + b_nu_n \in V$

is an element of *U* if and only if the coordinates $b_{m+1} = u_{m+1}^*(x), \ldots, b_n = u_n^*(x)$ of *x* with respect to the basis u_1, \ldots, u_n of *V* are zero. (**Remark:** This is the most common method of characterizing the elements of a subspace.)

[∗]5.8 Let *x*₁,..., *x_n* ∈ \mathbb{Z}^n be arbitrary vectors with integer components. For every $\lambda \in \mathbb{Q} \setminus \mathbb{Z}$, the vectors $x_1 + \lambda e_1, \ldots, x_n + \lambda e_n$ form a basis of \mathbb{Q}^n .

(Hint: Suppose $a_1(x_1 + \lambda e_1) + \cdots + a_n(x_n + \lambda e_n) = 0$ with $a_1, \ldots, a_n \in \mathbb{Z}$ and $gcd(a_1, \ldots, a_n) = 1$ and use $\lambda \in \mathbb{Q} \setminus \mathbb{Z}$ to contradict $gcd(a_1, ..., a_n) = 1$.)

***5.9** Let *K* be a field with at least *n* elements, $n \in \mathbb{N}^*$ and *V* be a finite dimensional *K*vector space. Let U_1, \ldots, U_n be subspaces of *V* of equal dimension *r* and u_{1i}, \ldots, u_{ir} be a basis of U_i for $i = 1, \ldots, n$. Show that there exists $t := \text{Dim}_K V - r$ vectors $w_1, \ldots, w_t \in$ *V* such that which simultaneously extend the given bases u_{1i}, \ldots, u_{ir} of U_i to a basis $u_{i1}, \ldots, u_{ir}, w_1, \ldots, w_t$ of *V* for every $i = 1, \ldots, n$. (Hint Use Exercise 2.2.).

5.10 Let *K* be a field and $F = a_0 + a_1X + \cdots + a_nX^n \in K[X]$ be a polynomial of degree deg $F = n$, $n \in \mathbb{N}$. Suppose that the multiples $m \cdot 1_K$ are all $\neq 0$ for all $m \in \mathbb{N}^*$, i.e. Char $K = 0$, see Exercise 5.2 (b). For example, $K = \overline{Q}$, R and $K = \mathbb{C}$ have this property. For pairwise distinct elements $\lambda_0, \ldots, \lambda_n \in K$, the polynomials $F(X - \lambda_0), \ldots, F(X - \lambda_n) \in$ $K[X]_{n+1}$ form a *K*-basis of the *K*-vector space $K[X]_{n+1}$ of polynomials of degree $\leq n$ over *K*. In particular, the polynomials $(X - \lambda_0)^n, \ldots, (X - \lambda_n)^n$ form a basis of $K[X]_{n+1}$.

(**Hint**: Since $\text{Dim}_K K[X]_{n+1} = n+1$ and hence it is enough to prove the linear independence of $F(X - \lambda_0),..., F(X - \lambda_n)$ over *K* which is proved in Exercise 4.6 (b).)

 \overline{D} , P. Patil / IISc "NPTEL-LA-July-Oct [2](#page-1-0)022-Repeat-IISc-ex05" tex August 2, 2022 ; 7:29 p.m. 2 / 2