Department of Mathematics, IISc Bangalore, Prof. Dr. D. P. Patil NPTEL—LA, July–Oct 2022 (Repeat)

NPTEL — Linear Algebra, July–Oct 2022 (Repeat)

Week 5

Exercise Set 5 : Dimension of vector spaces

Submit solutions of the ANY TWO blue coloured *Exercises ONLY

Let *K* be arbitrary field and let \mathbb{K} denote either the field \mathbb{R} or the field \mathbb{C} .

*5.1 Let $n \in \mathbb{N}$, $n \ge 2$. Determine whether or not the vectors

(a) (1,1,...,1),(1,2,1,...,1),...,(1,...,1,n) form a basis of \mathbb{R}^n (resp. \mathbb{Q}^n).

(b) (-(n-1), 1, ..., 1), (1, -(n-1), 1, ..., 1), ..., (1, ..., 1, -(n-1)) form a basis of \mathbb{R}^n (resp. \mathbb{Q}^n).

5.2 Let *K* be a finite field with *q* elements.

(a) The multiples $m \cdot 1_K$, $m \in \mathbb{Z}$, form a subfield K' of K.

(b) There exists a smallest positive natural number p such that $p \cdot 1_K = 0$. Moreover, it is prime (and is called the c h a r a c t e r i s t i c of K—denoted by Char K). The subfield $K' \subseteq K$ contains exactly p distinct elements $0, 1_K, \ldots, (p-1)1_K$.

(c) Show that $q = p^n$ with $n := \text{Dim}_{K'}K$. (**Remark :** *The number of elements is a finite field is a power of a prime number.* Conversely, for a given prime-power q, there exists (essentially unique) field with q elements.)

5.3 Let $\omega \in \mathbb{R}_+^{\times}$ be a fixed positive real number. For $a \in \mathbb{R}$ and $\varphi \in \mathbb{R}$, let $f_{a,\varphi} : \mathbb{R} \to \mathbb{R}$ be the function defined by $t \mapsto a \sin(\omega t + \varphi)$ and let $W := \{f_{a,\varphi} \mid a, \varphi \in \mathbb{R}\}$. Then W is a \mathbb{R} -subspace of the \mathbb{R} -vector space $\mathbb{R}^{\mathbb{R}}$ of all \mathbb{R} -valued functions on \mathbb{R} .

(a) Find a \mathbb{R} -basis of the \mathbb{R} -subspace W. What is the dimension $\text{Dim}_{\mathbb{R}}W$? (Hint: The functions $t \mapsto \sin \omega t$ and $t \mapsto \cos \omega t = \sin(\omega t + \pi/2)$ form a basis of W.

- **Remark:** Elements of W are called harmonic oscillations with the circular frequency ω .)

(b) Show that every $f \neq 0$ function in W has a unique representation

 $f(t) = a \sin(\omega t + \varphi), \qquad a > 0 \quad \text{and} \quad 0 \le \varphi < 2\pi.$

(**Remark :** This unique *a* is called the a m p l i t u d e and φ is called the p h as e a n g l e of *f*. The zero function has the amplitude 0 and an arbitrary phase angle.)

(c) From the amplitudes and the phase angles of two harmonic oscillations f and g, compute the amplitudes and the phase angles of the functions $f \pm g$.

5.4 Let *V* be a *K*-vector space of dimension $n \in \mathbb{N}$.

(a) If H_1, \ldots, H_r are hyper-planes in V, then show that $\text{Dim}_K(H_1 \cap \cdots \cap H_r) \ge n - r$.

(b) If $U \subseteq V$ is a subspace of codimension *r*, then show that there exist *r* hyper-planes H_1, \ldots, H_r in *V* such that $U = H_1 \cap \cdots \cap H_r$.

D. P. Patil / IISc "NPTEL-LA-July-Oct 2022-Repeat-IISc-ex05".tex August 2, 2022 ; 7:29 p.m.

1/2

5.5 Let *K* be a field and let $a_0, \ldots, a_m \in K$, $a_m \neq 0$. Show that the subset

$$W(a_0,...,a_m) := \{ (x_n)_{n \in \mathbb{N}} \in K^{\mathbb{N}} \mid a_0 x_n + a_1 x_{n+1} + \dots + a_m x_{n+m} = 0 \text{ for all } n \in \mathbb{N} \}$$

is a subspace of $K^{\mathbb{N}}$ of the dimension m. (Hint: Let $e_n := (\delta_{i,n})_{i \in \mathbb{N}}$, $n \in \mathbb{N}$ and $\mathbf{s} : K^{\mathbb{N}} \to K^{\mathbb{N}}$, $e_n \mapsto e_{n+1}, n \in \mathbb{N}$, denote the shift operator on $K^{\mathbb{N}}$. Then $(x_n)_{n \in \mathbb{N}} \in V(a_0, \ldots, a_m)$ if and only if $(x_n)_{n \in \mathbb{N}} \in \operatorname{Ker} \alpha(\mathbf{s})$. Moreover, the operator $\alpha(\mathbf{s}) : K^{\mathbb{N}} \to K^{\mathbb{N}}$ is surjective and the map $\operatorname{Ker} \alpha(\mathbf{s}) \to K^m$, $(x_n)_{n \in \mathbb{N}} \mapsto (x_0, x_1, \ldots, x_{m-1})$ is an isomorphism of K-vector spaces.

-**Remark :** We say that a sequence $(x_n)_{n \in \mathbb{N}} \in K^{\mathbb{N}}$ satisfy the (linear) recursion equation with (recursion) polynomial $\alpha(X) = a_0 + a_1 X + \dots + a_m X^m \in K[X]$ if the sequence $(x_n)_{n \in \mathbb{N}} \in V(a_0, \dots, a_m)$. If K is algebraically closed (for example, if $K = \mathbb{C}$), then one can also find a K-basis of $V(a_0, \dots, a_m)$ in by using the zeros of the polynomial $\alpha(A)$.)

*5.6 Let $x_1 = (a_{11}, ..., a_{1n}), ..., x_n = (a_{n1}, ..., a_{nn})$ be elements of \mathbb{K}^n with

$$|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ji}|$$
 for all $i = 1, \dots, n$.

Show that x_1, \ldots, x_n is a basis of \mathbb{K}^n .

(**Hint**: It is enough to show the linear independence of x_1, \ldots, x_n . If $b_1x_1 + \cdots + b_nx_n = 0$ with $|b_i| \le 1$ for all *i* and $b_{i_0} = 1$ for some i_0 . This already contradicts the give condition for i_0 .)

5.7 Let V be a finite dimensional K-vector space and let U be a subspace of V. Let u_1, \ldots, u_m be a basis of U and let $u_1, \ldots, u_m, u_{m+1}, \ldots, u_n$ be an extended basis of V. Show that $x = a_1u_1 + \cdots + a_mu_m + b_{m+1}u_{m+1} + \cdots + b_nu_n \in V$

is an element of U if and only if the coordinates $b_{m+1} = u_{m+1}^*(x), \ldots, b_n = u_n^*(x)$ of x with respect to the basis u_1, \ldots, u_n of V are zero. (**Remark :** This is the most common method of characterizing the elements of a subspace.)

*5.8 Let $x_1, \ldots, x_n \in \mathbb{Z}^n$ be arbitrary vectors with integer components. For every $\lambda \in \mathbb{Q} \setminus \mathbb{Z}$, the vectors $x_1 + \lambda e_1, \ldots, x_n + \lambda e_n$ form a basis of \mathbb{Q}^n .

(**Hint**: Suppose $a_1(x_1 + \lambda e_1) + \dots + a_n(x_n + \lambda e_n) = 0$ with $a_1, \dots, a_n \in \mathbb{Z}$ and $gcd(a_1, \dots, a_n) = 1$ and use $\lambda \in \mathbb{Q} \setminus \mathbb{Z}$ to contradict $gcd(a_1, \dots, a_n) = 1$.)

*5.9 Let *K* be a field with at least *n* elements, $n \in \mathbb{N}^*$ and *V* be a finite dimensional *K*-vector space. Let U_1, \ldots, U_n be subspaces of *V* of equal dimension *r* and u_{1i}, \ldots, u_{ir} be a basis of U_i for $i = 1, \ldots, n$. Show that there exists $t := \text{Dim}_K V - r$ vectors $w_1, \ldots, w_t \in V$ such that which simultaneously extend the given bases u_{1i}, \ldots, u_{ir} of U_i to a basis $u_{i1}, \ldots, u_{ir}, w_1, \ldots, w_t$ of *V* for every $i = 1, \ldots, n$. (Hint Use Exercise 2.2.).

5.10 Let *K* be a field and $F = a_0 + a_1X + \dots + a_nX^n \in K[X]$ be a polynomial of degree deg F = n, $n \in \mathbb{N}$. Suppose that the multiples $m \cdot 1_K$ are all $\neq 0$ for all $m \in \mathbb{N}^*$, i.e. Char K = 0, see Exercise 5.2 (b). For example, $K = \mathbb{Q}$, \mathbb{R} and $K = \mathbb{C}$ have this property. For pairwise distinct elements $\lambda_0, \dots, \lambda_n \in K$, the polynomials $F(X - \lambda_0), \dots, F(X - \lambda_n) \in K[X]_{n+1}$ form a *K*-basis of the *K*-vector space $K[X]_{n+1}$ of polynomials of degree $\leq n$ over *K*. In particular, the polynomials $(X - \lambda_0)^n, \dots, (X - \lambda_n)^n$ form a basis of $K[X]_{n+1}$.

(**Hint**: Since $\text{Dim}_K K[X]_{n+1} = n+1$ and hence it is enough to prove the linear independence of $F(X - \lambda_0), \dots, F(X - \lambda_n)$ over *K* which is proved in Exercise 4.6 (b).)

D. P. Patil/IISc

"NPTEL-LA-July-Oct 2022-Repeat-IISc-ex05".tex

August 2, 2022 ; 7:29 p.m.

2/2