Python assignment three and four
This Assignment is designed to take you through creating classes, aggregation, and manipulating arrays of objects.
Scenario: A University likes to have a simple system to keep track of all the students (graduate and undergrads). You have to create a menu-driven program for the user to use the system through the console. The following classes are needed for this object-oriented database.
1) Create a class called Student that has the following stored properties:
Student
· StudentID : Integer
· stdFirstName: String
· stdLastName: String
· stdMarks : Double []
· stdAddress: Address
** Class Student should have set/get properties for its private parameters, constructor and have following methods:
Average() - that returns the average grade for students
__str__() method that returns the above information as a String
*** student ID has to be self generated and increment for every student you are adding

2) Create a class called Address which can be aggregated into the class student (aggregation means use an object of one class as a properties of other)
Address
· streetInfo: String
· city: String
· postalCode: String
· province: String
· country: String
· ** Class Student should have set/get properties for its private parameters, constructor and have following methods:

__str__() method that returns the above information as a String
3) Create a class called UndergraduateStudent that inherits from Student and has the following members:

Undergrad Student
· subject: String
· yearOfEntry :Integer
· ** Class Student should have set/get properties for its private parameters, constructor and have following methods:
·
Graduate() – Boolean that returns true if the Student is eligible to graduate when the average of their marks is greater than 50.
__str__() method that returns the above information as a String
4) Create a class called GraduateStudent that inherits from Student and has the following members:
Graduate Student
· subject : String
· yearOfEntry :Integer
· thesisTopic: String
· ** Class Student should have set/get properties for its private parameters, constructor and have following methods:
Graduate() – Boolean that returns true if the Student is eligible to graduate when the average of their marks is greater than 70.
__str__() method that returns the above information as a String
Summary of Operations
System Menu:
1. Add undergraduate student
2. Add graduate student
3. View all the students
4. View only eligible students for graduation
5. exit
Overview:
· You may use a list to store all your students(graduate and undergrad) into one list of objects.
· Your data has to be stored into a file of your choice using serialization which the user can view after existing the program.
1 –Add undergraduate Student: this menu should accept all the necessary parameters for undergraduate students and create an instance from undergraduate class and store it into students array.
2 -Add graduate student: this menu should accept all the necessary parameters for graduate students. It should create an instance from the graduate class and store it in the students' array.

3- View all the students: view all the relevant information of students (graduate and undergraduate) from students lists

4- View only eligible students for graduation: view all the relevant information (graduate and undergraduate) from the students' array only if they are eligible to graduate.

5 – Exit: exit the running menu (program)
Submission Requirements:
· Submission: on the Moodle
· Required files:
· You may upload all the python files, including main or/and zip the project and upload.
· If you use online compilers, you may copy-paste your code into this document.
CAREFUL NOTE:
- Please safeguard your code work.
- If two or more assignments are the same (or very much alike) they will all get 0 marks, so be cautious not to share your application with others.

Marking Scheme:
	Trait
	Excellent (85-100)
	Good (70-85)
	Satisfactory(50-70)
	Unsatisfactory (< 50)

	Delivery
 (5 marks)
	· Submitted on time and in the correct format.
· Completed 90 - 100 percent of the program requirements
	· Submitted on time and in the correct format.
· Completed 75 -90 percent of the program requirements
	· Submitted on time and in the correct format.
· Completed 70 -80 percent of the program requirements
	· Submitted late or in the wrong format.
· Completed less than 70% of the program requirements

	Coding Standards and Documentation (10 marks)
	· Includes name, date and assignment number.
· Excellent variable names used (no global variables, or vague naming).
· Useful documentation descriptions.
· All functions commented.
· Indented to standard.
	· Includes name, date and assignment number.
· Appropriate variable names used (little use of global variables, or vague naming).
· Useful documentation descriptions.
· Most functions commented. Indented to standard
	· Includes name, date and assignment number.
· Appropriate variable names used (a few use of global variables, or vague naming).
· Basic documentation descriptions including purpose for functions.
· Mostly indented well
	· No name, program description included
· Poor or misleading variable names used. Little or no indentation.
· Regular use of global variables

	Specification and Runtime (75 marks)
	· The program meets all of the specifications required and works.
· No errors in output. Output is formatted excellently.
· All requirements met
	· No errors in output. Output is formatted.
· All requirements met.
· It also meets most of the other specifications.
	· No errors in output.
· Output has basic formatting or meets core specifications only.
	· Does not run due to errors, data read incorrectly.
· Little or no requirement met.
· Output is poorly formatted or does not follow specifications.

	Efficiency
(10 marks)
	· Algorithm is easy to understand and efficient.
· Can be maintained or modified with minimal changes
	· Algorithm is easy to understand and efficient
	· Algorithm is easy to understand and but inefficient (excessive use of variables, loops or conditionals)
	· Algorithm is hard to understand and very inefficient (excessive use of variables, loops or conditionals)

