
COL100 Assignment 10
2nd Semester Semester : 2021-2022

Deadline: 11:59 pm, 12 June, 2022

General Instructions

You should attempt this assignment without taking help from your peers or referring to online resources
except for documentation (we will perform a plagiarism check amongst all submissions). Any violation
of above will be considered a breach of the honor code, and the consequences would range from zero
marks in the assignment to a disciplinary committee action.

Submission Instructions

1. Please write efficient code that and uses minimum time to run. We will be giving only few secs
time for your code to produce the output on autograder. Strict penalties for writing inefficient
code. Search online to know how to write efficient code.

2. Your code must be in a file named <EntryNo>-q.c. Example: if your Entry Number is
2018CS50402 then your file must be named 2018CS50402-q.py. Please ensure this point,
otherwise 0 will be given.

3. You must submit the lab question mentioned in the assignment as "In Lab Component". The
question evaluation for a lab will be done in the lab only and evaluations not done for the in-lab
component for a student in his/her lab slot will be marked 0. It is your duty to get them evaluated.

4. Submit your code in a .zip file named in the format <EntryNo>.zip. Make sure
that when we run unzip <EntryNo>.zip, a folder <EntryNo> should be produced in
the current working directory. For eg. if your entry number is 2021CS5XXXX, then your zip
file would be 2021CS5XXXX.zip and upon unzipping, it should produce a folder 2021CS5XXXX
containing file <EntryNo>-q.c. We have provided a zip that contain the skeleton code with this
directory structure and similar naming convention. Please ensure this point, otherwise 0
will be given.

5. Your submissions will be auto-graded. Make sure that your code follows the specifications
(including directory structure, input/output, importing libraries, submission .zip file) of the
assignment precisely.

6. You have to write all your code in C only.

Some Clarifications

1. Every problem description is followed by some examples showing how exactly input and output is
being expected. Please refer to them for more clarity. Please ensure this point is followed
otherwise 0 will be given.

2. Write your code only in skeleton code provided.

3. Do not change function names, argument order, and input-output statements , etc already in the
skeleton code.

4. Do not comment the main function. Just implement the functions that you are asked to.

5. Do not include any other headers except stdio.h, stdlib.h and string.h.

6. If you still have any more doubts, feel free to shoot them at Piazza.



1 Python Lists in C

In this assignment you will be implementing Python List Data structure and the APIs associated with
it, but in C programming language. One way to achieve this is to use pointers to handle this dynamic
nature of the Python Lists (since arrays in C are static). In this way, a list is made up of some "nodes"
that contain pointers of the next node; therefore you can move or "traverse" the list by moving through
the pointers stored in each node. Therefore, we only need to store the "location" of the first node i.e.
the head (of course, we store this location using a pointer). A "Node" is then a collection of 2 things:
the first one is the data which it stores and second is the pointer that points to the next node of the list,
that is how they are linked. Observe that you can only traverse in a single direction as only pointer to
the next node is present. Note that initially, when the list is empty, HEAD would be NULL. Also, the last
node always points to NULL marking the end of the list.

There are a couple of benefits of having this pointer containing list over an array. An array has
fixed size, you have to copy the whole array if you want to add an element and the array is filled. Here
you have dynamic size and can easily add and remove elements. Again as mentioned above, you will be
mimicking a list in Python and implementing the functions present in lists in Python.

You are given a global pointer PythonListHead that always points to the head of the Python List
and some helper function to create, print and delete the nodes. You are not allowed to change these
helper functions that are already there since any changes might interfere with the autograder. Also,
make sure that PythonListHead points to the head of the list always. Not following this invariant
might result in malfunctioning of the autograder.

Some descrption of the helper functions provided to you:

create_new_node(int x): This function would create a new Node with the data attribute as x
and the next attribute as NULL and return a pointer to it.

delete_node(struct Node* ptr): This function would delete the node present at the ptr loca-
tion and free the memory associated with it. Make sure ptr actually contains a valid Node, otherwise
the function may throw a segmentation fault.

You have to implement the functions mentioned below and are also provided with the main func-
tion. Again, as above, do not change the main function. You can change the inputs given to the
program to check your code, you may also add print statements in your functions but make sure before

2



submitting, you comment all such print statements.

Please download the skeleton code from the gradescope. Please read the comments of the Skele-
ton code for more clarity on the functions. You only need to fill the functions in the skeleton code and
change nothing else. You can’t change the parameters and the return types of the functions in the
skeleton code. You just have to return the values in the functions and rest will be handled by the main
given to you.

Functions to be implemented are as below:

FUNCTIONS:

1. void append(int x): In-Lab Component
This function takes an integer parameter x and appends a Node with data x at the end of the list.
Level: Medium

2. void insert(int position, int x):
This function takes two parameters position and interger x and will return insert a Node with
data x at the given position in the list. If position doesn’t exists then do nothing.
Level: Medium

3. void pop():
This function deletes the Node from the end of the list. If the list is empty, do nothing.
Level: Easy

4. void clear():
This function deletes all the elements from the list.
Level: Easy

5. int count(int x): In-Lab Component
This function takes an integer argument x and then returns the count of the number of Nodes
that contain the data as x in the list.
Level: Easy

6. void reverse():
This function in place reverses the list at the current state. i.e. You cannot use extra space while
reversing the list. Make sure you change the PythonListHead accordingly.
Level: Hard

7. int len():
This function returns the number of Nodes in the list.
Level: Easy

8. void setitem(int position, int x):
This function returns takes position and integer x as the parameters and sets the data of the
Node at the given position as x.
Level: Easy

9. int getitem(int position):
This function takes the position as parameter and returns the data of the Node at the given
position. If no such position exists in the list return −1.
Level: Easy

3



10. void erase(int position):
This function takes parameter position and removes the Node at the given position.
Level: Medium

11. void swap(int position):
This function takes parameter position and swaps the Nodes present at position and position+1.
If no such position or position+ 1 exists, do nothing.
Level: Medium

12. void index_into(int *positions, int n):
Returns the head of the newly formed Python List containing elements present in positions
in the original List. Note that you have to create new Python List and return its head. Here
positions is an array of size n. eg. if positions = [2, 3, 5], you need to return a newly
formed list having nodes that were at position 2, 3 and 5 in the original list.
Level: Hard

13. void sort():
This function sorts the Python List in-place. You might use the swap function defined above to
implement Bubble Sort (Wiki). But you are free to implement any algorithm that achieves this.
Note that PythonListHead might change at the end of this function.
Level: Hard

Below we provide a description of the input.txt file that is given to you along with starter-code
for more clarity. You may change the file to test your code on various other inputs. We have also
provided a Makefile that enables you to compile your code and then run it on the given input.txt
file. Just use the command make on the terminal. For more information on makefiles, refer here and here.

INPUT:
1 16
2 print
3 append 1
4 append 2
5 append 3
6 print
7 getitem 0
8 getitem 1
9 getitem 100

10 setitem 0 100
11 print
12 reverse
13 print
14 erase 0
15 print
16 erase 5
17 print

OUTPUT:
1 1 2 3
2 1
3 2
4 100 2 3
5 3 2 100
6 2 100
7 2 100

EXPLANATION

1. The first line indicates the number of queries that we will be making. In this case, it is 16.

4

https://en.wikipedia.org/wiki/Bubble_sort
https://www.cs.colby.edu/maxwell/courses/tutorials/maketutor
https://makefiletutorial.com


2. Initially the list is empty.

3. We append 1 to the list, so the list becomes 1.

4. We append 2, 3 as well to the list. The list now is 1, 2, 3.

5. We call print and it prints the list 1 2 3.

6. Now we call getitem 0 which means get the item at position 0 and it will return 1.

7. Now we call getitem 1 which means get the item at position 1 and it will return 2.

8. Then setitem 0 100 is called which sets the data as 100 at position 0 so the list now becomes
100 2 3.

9. Then print is called that will print the current list.

10. Now we call reverse and it will reverse the list. The list now is 3 2 100

11. Then print is called that will print the current list.

12. Then we call erase 0 and it will erase the element at position 0. Now list becomes 2 100.

13. Then print is called that will print the current list.

14. Then we call erase 5 and it will erase the element at position 5. Since 5 is not the position of
any Node in the list, so it will do nothing. Now list becomes 2 100.

15. Then print is called that will print the current list.

5


	Python Lists in C

