10th June 2022

Frankfurt University of Applied Sciences High Integrity Systems

Prof. Dr. Ruth Schorr

Formal Specification and Verification Summer Term 2022 Exercise Sheet 6

Question 1:

Let AP = {a, b, c}. Consider the following NFA A over the alphabet 2^{AP} and the following transition system TS:

Construct the product $TS \otimes A$ of the transition system and the NFA.

Question 2:

Let AP = {a, b, c}. Consider the following NFA A over the alphabet 2^{AP}

and the following transition system TS:

- a) Which of the following words are accepted by the NFA A?
 - 1) {b} Ø {a, b} {a, b, c}
 - 2) {b} {a, c} {a} {a, b, c}
 - 3) {a, b} {a, b} Ø {b, c}
 - 4) {b} {a, c} {a, c} {a, b, c}
- b) Describe informally the language accepted by the NFA A?
- c) Construct the product TS \otimes A of the transition system and the NFA.

Question 3:

Let AP = {a, b, c}. Provide an NFA A that accepts $(a^*b)^*(bc^*)^*$.

Question 4 (mandatory for pre-requisite):

Consider the following mutual exclusion algorithm from Peterson

P ₁	loop forever	
		(* non-critical actions *)
	<b1 :="2" x="">;</b1>	(* request; assignments are being considered as indivisible actions *)
	wait until (x = $1 \lor \neg b_2$)	
	$b_1 := false$	(* release *)
		(* non-critical actions *)
	end loop	

 b_i is true if and only if process P_i is waiting or in critical section (i = {1, 2}). Initially it is assumed that $b_1 = b_2$ = false. If both processes want to enter their critical section, x decides who gets access.

Process P_i (i = {1, 2}) can be represented by program graph PG_i over Var = {x, b₁, b₂} with location n_i, w_i, and c_i as follows:

The reachable part of the underlying transition system $TS_{Peterson} = TS(PG_1 \parallel PG_2)$ for AP = { x = 2, crit1 } is as follows:

Each state in TS_{Peterson} has the form $< loc_1, loc_2, x, b_1, b_2 >$.

a) Derive an NFA A such that L(A) = MinBadPref(P) for P: "Process P₁ never enters its critical section from a state where x = 2".

Please remember that the automaton needs to be non-blocking and no initial state should be a final state because we want to use the automaton for the product construction.

- b) Construct $TS_{Peterson} \otimes A_{.}$
- c) Check TS_{Peterson} |= P using TS_{Peterson} \otimes A. Explain your answer.