
1

ISEP

Algorithmics and Advanced programming

TP5: Optimization

Part1: Online-optimizer

Use the following link: https://online-optimizer.appspot.com/?model=builtin:default.mod

• Solve the following LP problem and report the solution.

Part2: Travelling Salesman Problem

A clear example is the Travelling Salesman Problem: Suppose there are several locations in a city

that need to be visited, having the distances of every pair of points stored in a matrix. The

objective is to complete the cycle following the optimal path, the one which minimizes the

traversed distance.

How is the algorithm?

The Held-Karp algorithm is developed to solve this problem. This algorithm is a brute search

algorithm that belongs to the family of the Branch and bound family. The algorithm will evaluate

all the possible alternatives, keeping the best one and using it as a threshold to improve. The

uploaded file contains an example of an input file and 2 variants of the Held-Karp algorithm:

1. Example.txt

𝑀𝑖𝑛 3𝑥1 + 2𝑥2

subject to

𝑥1 + 𝑥2 ≤ 9

3𝑥1 + 𝑥2 ≤ 18

𝑥1 ≤ 7

𝑥2 ≤ 6

𝑥1, 𝑥2 ≥ 0

https://online-optimizer.appspot.com/?model=builtin:default.mod
https://en.wikipedia.org/wiki/Travelling_salesman_problem
https://en.wikipedia.org/wiki/Branch_and_bound

2

It is an example of a distance, where the different rows and columns refer to different locations.

The main diagonal is always zero because the distance from one location to itself is always zero.

Note: The distance A-B could be different from the distance B-A.

2. HK_Paths.java

The first implementation of the algorithm allows us to see all the possibilities with their

distances.

1- Is this implementation efficient? Why?

3. HK_Optimal.java

The second implementation of the algorithm is HK_Optimal.java

1- What is the difference between HK_Paths.java and HK_Optimal.java

2- What is the optimal solution for the example? How do you evaluate the Held-Karp

algorithm solution? Is it optimal? Why?

3- Does it matter from where we start?

4- Improve the algorithm and explain for which reason your algorithm is better? (time,

complexity, solution quality and etc.)

