
TP1:  Example of a recursive function



def factorial(x):
"""This is a recursive function
to find the factorial of an integer"""

if x == 1:
return 1

else:
return (x * factorial(x-1))

num = 3
print("The factorial of", num, "is", factorial(num))

TP1:  Example of a recursive function

Output:??? 



def factorial(x):
"""This is a recursive function
to find the factorial of an integer"""

if x == 1:
return 1

else:
return (x * factorial(x-1))

num = 3
print("The factorial of", num, "is", factorial(num))

TP1:  Example of a recursive function

Output: The factorial of 3 is 6



TP1:  Example of a recursive function

Output:??? 



10 + sum(9)
10 + ( 9 + sum(8) )
10 + ( 9 + ( 8 + sum(7) ) )
...
10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 + sum(0)
10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 + 0

Output:



Permutation of a string of unique character 



class Main
{

// Utility function to swap two characters in a character array
private static void swap(char[] ch, int i, int j)
{

char temp = ch[i];
ch[i] = ch[j];
ch[j] = temp;

}
// Recursive function to generate all permutations of a String
private static void permutations(char[] ch, int currentIndex)
{

if (currentIndex == ch.length - 1) {
System.out.println(String.valueOf(ch));

}

for (int i = currentIndex; i < ch.length; i++)
{

swap(ch, currentIndex, i);
permutations(ch, currentIndex + 1);
swap(ch, currentIndex, i);

}
}

// generate all permutations of a String in Java
public static void main(String[] args)
{

String s = "ABC";
permutations(s.toCharArray(), 0);

}
}



Dynamic programming 

Memoization is a technique for implementing dynamic programming to make recursive 
algorithms efficient. It often has the same benefits as regular dynamic programming without 
requiring major changes to the original more natural recursive algorithm.

Basic Idea

•The first thing is to design the natural recursive algorithm.
•If recursive calls with the same arguments are repeatedly made, then the inefficient 
recursive algorithm can be memoized by saving these subproblem solutions in a table so 
they do not have to be recomputed.



Implementation

To implement memoization to recursive algorithms, a table is maintained with 
subproblem solutions, but the control structure for filling in the table occurs during 
normal execution of the recursive algorithm. This can be summarized in steps:

1.A memoized recursive algorithm maintains an entry in a table for the solution to 

each of subproblem,

2.Each table entry initially contains a special value to indicate that entry has yet to 

be filled in.

3.When the subproblem is first encountered, its solution is computed and stored 

in the table.

4.Subsequently, the value is looked up rather than computed

To illustrate the steps above, let's take an example for computing nth Fibonacci 
number with a recursive algorithm as:
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To implement memoization to recursive algorithms, a table is maintained with 
subproblem solutions, but the control structure for filling in the table occurs during 
normal execution of the recursive algorithm. This can be summarized in steps:

1.A memoized recursive algorithm maintains an entry in a table for the solution to 

each of subproblem,

2.Each table entry initially contains a special value to indicate that entry has yet to 

be filled in.

3.When the subproblem is first encountered, its solution is computed and stored 

in the table.

4.Subsequently, the value is looked up rather than computed

To illustrate the steps above, let's take an example for computing nth Fibonacci 
number with a recursive algorithm as:

// without memoization
static int fib(int n) {

if (n == 0 || n == 1) return n;
return fib(n - 1) + fib(n - 2);

}

What is the 
issue?



Maximum Product of Two Sequences Problem


