
ISEP!

Algorithmics!and!Advanced!programming!
March!2020!

Tutorial Course 2

This!course!was!thought!to!be!done!in!java,!but!you!are!free!to!do!it!in!any!language!you!
find!suitable,!or!are!more!comfortable!with.!

Unit tests

(You!can!choose!between!exercise!I!&!II)!

I. The!Game!of!Life!

Wikipedia�s article

Rules

The universe of the Game of Life is an infinite, two-dimensional grid of square cells, each of which

is in one of two possible states, alive (1) or dead (0). Every cell interacts with its eight neighbors,

which are the cells that are horizontally, vertically, or diagonally adjacent.

At each step in time, the following transitions occur:

· Any living cell with 2 or 3 neighbors survives.

· Any dead cell with 3 live neighbors becomes a live cell.

· All other live cells die in the next generation. Similarly, all other dead cells stay dead.

Instructions!

You!are!given!the!source!code!that!implements!the!previous!game!of!life!algorithm,!which!is!not!

unit!tested.!

1. Download!the!source!code!in!moodle!under!the!section!�TP2�,!TheGameOfLife.zip!

2. Import!it!and!into!your!IDE!and!launch!the!program!(understand!the!algorithm!and!

change!the!inputs!in!order!to!see!some!different!outcomes)!

3. Write!all!the!unit!tests!that!you!find!necessary!and!modify!the!source!code!in!order!to!

ensure!the!following!specifications:!!

a. The!algorithm!must!be!consistent!with!the!base!rules!of!the!game!of!life!(cf!

�Rules�)!You!should!mainly!focus!on!(next!state!computation,!the!count!of!the!

living!neighbors,!the!data!structures,!the!initialization)!

b. The!boundaries!(n,!m)!of!the!grid!has!to!be!n!>!1!&!m!>!1!

i. You!may!modify!the!code!if!you!judge!it!insufficient!

4. BONUS:!Implement!a!better!error!handling!for!this!algorithm!and!add!the!unit!tests!that!

go!along.!

! !

II. Merge Sort

Implement and unit test the Merge sort algorithm.

Merge sort is more complicated. The simplest implementation of merge sort uses recursion, but we’ll

use a different implementation that does not use recursion. The main idea in merge sort is that given

two sorted arrays, we can merge them relatively easily to form one (larger) sorted array. Start by writing

a function merge:

function t = merge(v,w)

% Merge sorted vectors v and w to form vector t, which is also sorted.

% v,w: sorted numeric vectors not necessarily of the same length

% t: sorted vector whose length is length(v)+length(w)

Your code should take advantage of the fact that v and w are already sorted. We begin by considering a

vector x with length n where n is a power of 2. Here’s the general idea:

1. Set the subvector length m to be 1. (Why? It’s the shortest vector that is “sorted.”)

2. Divide vector x into subvectors of length m.

3. Merge every two adjacent subvectors. I.e., merge subvectors 1 and 2, 3 and 4, 5 and 6, . . . ,

so that the merged subvector (each of length 2m) is sorted.

4. Double the value of m. (That’s the length of each merged—sorted—subvector.)

5. Repeat steps 2 to 4 until < ? >. You should figure this out.

Let’s look at an example. The vector below is of length 8.

II. Radix sort

Radix sort is a non-comparative sorting algorithm. It avoids comparison by creating and

distributing elements into buckets according to their radix. Its input is a list of unsorted

numbers and it outputs a sorted list.

The radix (or base) of a number is the number of unique digits that can be used for its

representation, e.g.:

- Radix of 2: binary numeral system (00001, 1010111,...)

- Radix of 10: Decimal system (7, 83, 9246,...)

- Radix of 16: Hexadecimal system (4, ce7, 6ba4,...)

Radix sort works as follows:

Input list (base 10):

[170, 45, 75, 90, 2, 802, 2, 66]

Starting from the rightmost (last) digit, sort the numbers based on that digit:

[{170, 90}, {02, 802, 02}, {45, 75}, {66}]

Notice that a 0 is prepended for the two 2s so that 802 maintains its relative order as in the

previous list (i.e. placed before the second 2) based on the merit of the second digit.

Sorting by the next left digit:

[{02, 802, 02}, {45}, {66}, {170, 75}, {90}]

And finally by the leftmost digit:

[{002, 002, 045, 066, 075, 090}, {170}, {802}]

Deliverable:

- A working implementation of radix sort for decimal number

- Some unit test for ensure the correct functionality

- Bonus: extend your implementation so it also works for an arbitrary radix (e.g. 3, 8,

16,...)

ISEP!

Algorithmics!and!Advanced!programming!
March!2020!

II. HeapSort!

Implement!and!unit!test!the!HeapSort!algorithm.

III. TDD!:!Bowling!score!computing!

Rules

Create!a!program,!which,!given!a!valid!sequence!of!rolls!for!one!line!of!American!Ten-Pin!

Bowling,!produces!the!total!score!for!the!game!

We!can!briefly!summarize!the!scoring!for!this!form!of!bowling:!

· Each!game,!or!�line�!of!bowling,!includes!ten!turns,!or!�frames�!for!the!bowler.!

· In!each!frame,!the!bowler!gets!up!to!two!tries!to!knock!down!all!the!pins.!

· If!in!two!tries,!he!fails!to!knock!them!all!down,!his!score!for!that!frame!is!the!total!

number!of!pins!knocked!down!in!his!two!tries.!

· If!in!two!tries!he!knocks!them!all!down,!this!is!called!a!�spare�!and!his!score!for!the!

frame!is!ten!plus!the!number!of!pins!knocked!down!on!his!next!throw!(in!his!next!

turn).!

· If!on!his!first!try!in!the!frame!he!knocks!down!all!the!pins,!this!is!called!a!�strike�.!His!

turn!is!over,!and!his!score!for!the!frame!is!ten!plus!the!simple!total!of!the!pins!knocked!

down!in!his!next!two!rolls.!

· If!he!gets!a!spare!or!strike!in!the!last!(tenth)!frame,!the!bowler!gets!to!throw!one!or!

two!more!bonus!balls,!respectively.!These!bonus!throws!are!taken!as!part!of!the!same!

turn.!If!the!bonus!throws!knock!down!all!the!pins,!the!process!does!not!repeat:!the!

bonus!throws!are!only!used!to!calculate!the!score!of!the!final!frame.!

· The!game!score!is!the!total!of!all!frame!scores.!

!

TDD!(french!article)!/!TDD!(english!article)!!

Questions!

- Using!a!TDD!(Test!Driven!Development)!approach,!create!a!program!that!solves!this!

bowling!score!computing!problem.!

Requirements!

Write!a!Game!class,!that!has!two!methods:!(you!can/should!of!course!have!as!many!classes!as!

you!want!e.g.!:Frame,!the!following!constraint!applies!only!for!the!Game!class)!

- void!roll(int)!is!called!each!time!the!player!rolls!a!ball.!The!argument!is!the!number!

of!pins!knocked!down!

- int!score()!returns!the!total!score!of!that!game.!

