
4/27/22, 11:26 AM https://blackboard.stonybrook.edu/bbcswebdav/pid-1726048-dt-content-rid-14060695_1/courses/1224-CSE-214-SEC01-50585/h…

https://blackboard.stonybrook.edu/bbcswebdav/pid-1726048-dt-content-rid-14060695_1/courses/1224-CSE-214-SEC01-50585/hw7%283%29.html 1/5

HOMEWORK - SPRING 2022

HOMEWORK 7 - due Tuesday, May 3rd no later than 7:00pm

REMINDERS:
● Be sure your code follows the coding style for CSE214.
● Make sure you read the warnings about academic dishonesty. Remember, all work you
submit for homework assignments MUST be entirely your own work. Also, group efforts are
not allowed.
● Login to your grading account and click "Submit Assignment" to upload and submit your
assignment.
● You are allowed to use any built-in Java API Data Structure classes to implement this
assignment except where noted.
● Do not submit the Jar file along with your Java files. Otherwise, 10 points will be deducted.
● You may use Scanner, InputStreamReader, or any other class that you wish for keyboard
input.

This is my last 214 hw, so at this point I don't mind being honest and saying that Long Island traffic is a pretty terrible
thing. Therefore, as your local omniscient narrator, I have decided to start over again, and I have created the Longer
Island. I'd like to see how terrible traffic on my island will be, so I have hired you to write a simulation to make sure
my island works. Because I am not a benevolent narrator, I'm just interested in people getting to work (they can figure
out their own way home). Generally on Longer Island, people head toward the local city, the Small Pear in order to go
to work. All the major highways are one way (toward the Small Pear in the morning, and away in the evening),
conveniently forming a DAG (Directed Acyclic Graph). I'm interested in answering two questions mainly: where can a
person get from a given city (a question that can be answered with a Depth First Search from a given city) and also
what is the maximum amount of flows between any two cities (I will give you an algorithm for this as well).
I would like you to make a program which can calculate these for me. Since I'm not sure I'm a terribly good island
designer, I'd like to be able to load other designs at a later date, and also load islands other people on the internet
have designed. Therefore, you will use a library to load files from the internet (it also works with files from your local
machine), so I can try other island configurations.
Your input will be a list of cities, and a list of roads from various cities, with their carrying capacities in terms of car per
minute.

NOTE: All exceptions explicitly thrown in Required Classes except for IllegalArgumentException are custom
exceptions that need to be made by you.

4/27/22, 11:26 AM https://blackboard.stonybrook.edu/bbcswebdav/pid-1726048-dt-content-rid-14060695_1/courses/1224-CSE-214-SEC01-50585/h…

https://blackboard.stonybrook.edu/bbcswebdav/pid-1726048-dt-content-rid-14060695_1/courses/1224-CSE-214-SEC01-50585/hw7%283%29.html 2/5

UML

The UML Diagram for all the classes specified below is as follows:

Required Classes

City
Write a fully-documented class named City that will represent each vertex/node of the graph. Each node needs to
know what roads lead out of it, and what the capacity of the roads is. The city should implement comparable, and the
compare method should look at the name of the city only, so we can print a list of cities alphabetically.

● HashMap<String,Integer> neighbors:the key is the name of the city, the Integer is the cost of the road
● String name: the name of the city
● public int compareTo(City o) - for the comparable

Optional:
● HashMap<String,Integer> tempNeighbors: - this may be useful for figuring out maximum network flow (you
can keep track of how much flow you have left on a given edge)
● Boolean discovered
● Boolean visited
● Any other fields/variables you want

IslandNetwork
Write a fully documented class called IslandNetwork that holds the graph. For extra credit, implement Djikstra's
algorithm for shortest path, using the edge capacities as weights. You may add additional fields and methods as
desired, however, you must be able to load a graph from a file, and then calculate the DFS from any node in the
graph, as well as maximal network flow from any node to any other node (printing "no flow" when applicable) for full
credit.

● public static IslandNetwork loadFromFile(String url) - loads the file from the given URL location
○ Please note: Big Data also is capable of loading files stored on the local machine. In order to do so
please specify file location in the same way you normally do for loading files in a normal directory).

● private HashMap<String, City> graph - this stores the cities in the graph
● public String (or void with prints or whatever other return type is convenient) maxFlow(String from, String to)
● public List<String> dfs(String from)
● EXTRA CREDIT: public String (or List<String> or void with prints or whatever other return type you want)
djikstra(String from, String to)
● Methods to add cities to the graph

Optional helper methods:
● resetTempCapacity() - resets the temporary capacities of a given node
● resetDiscoveredVisited() - resets discovered and visited for dfs

IslandDesigner
Write a fully documented class called island designer that allows the user to run Depth First Searches from any City
on the Island to any other City on the Island, as well as allowing the user to find the maximum network flow from any
City on the Island to any other City on the Island. For extra credit, also implement a shortest path algorithm that
shows the shortest path from any city on the Island to any other City on the Island.

● Public static void main(String[] args)

Useful Algorithms (Pseudocode)
Depth First Search:
DFS at a node(visiting a node):
 node.visited=true

for neighbor in node.neighbors():
 if(!neighbor.Discovered)

 neighbor.setDiscovered(true)
 print(neighbor)

 visit(neighbor)

Flow at a node:

1. Find a path from source to destination

4/27/22, 11:26 AM https://blackboard.stonybrook.edu/bbcswebdav/pid-1726048-dt-content-rid-14060695_1/courses/1224-CSE-214-SEC01-50585/h…

https://blackboard.stonybrook.edu/bbcswebdav/pid-1726048-dt-content-rid-14060695_1/courses/1224-CSE-214-SEC01-50585/hw7%283%29.html 3/5

 1.1 There exists a path from the source to the destination if there exists a path from any of the neighbors to the
destination and the
 available capacity from the source to the neighbor from which there exists a path is >=0 and also the available
capacity from the
 node to the neighbor is >=0. The total available capacity is equal to the minimum available capacity along any
given edge, and all
 the available capacities along the path should be decremented by this amount.
2. The capacity of a path from a node to its destination is the minimum of the capacity of the edge from the node to
its neighbor and the capacity of the path from the neighbor to the destination
3. Decrement the temp capacity of each edge on the path by this value
4. Print the path with the capacity of the path
5. Repeat (find new path+flow along path) from source to Dest until the available capacity along all paths is 0 (or
there are no paths available)

To find a path:
There exists a path from a node to the destination:
 if there exists a path from one of its neighbors to the destination (capacity is (min of capacity of the edge and
capacity of the
 path)).
 base case: if the node is a neighbor to the desired destination
 then, the path capacity is the available capacity from the node to the destination

Big Data Sample Program

import big.data.DataSource;

public class BigDataCityRoadsExample {

 public static void main(String args[]){
 HashMap<String,Node> cities = new HashMap<String,Node>();

DataSource ds = DataSource.connectXML("hw7.xml");
 ds.load();
 String cityNamesStr=ds.fetchString("cities");
 String[] cityNames=cityNamesStr.substring(1,cityNamesStr.length()-1).replace("\"","").split(",");
 String roadNamesStr=ds.fetchString("roads");
 String[] roadNames=roadNamesStr.substring(1,roadNamesStr.length()-1).split("\",\"");

 // Fill the HashMap here...
 }
}

Using a JAR in Eclipse:
Right click the project name in the ";Package Explorer"; tab (on the left, by default) - Select ";Build Path"; -
Select ";Add External Archives..."; - Navigate to where you saved bigdata.jar and select it.
Using a JAR NetBeans:
Right click the project name in the ";Package Explorer"; tab (on the left, by default) - Click on ";Properties";
- Select ";Libraries"; on the left - Click on ";Add JAR/Folder"; on the right - Navigate to where you saved
bigdata.jar and select it.
Using a JAR in IntelliJ: http://stackoverflow.com/questions/1051640/correct-way-to-add-external-jars-lib-jar-to-an-
intellij-idea-project
Using a JAR on the command line: http://stackoverflow.com/questions/2096283/including-jars-in-classpath-on-
commandline-javac-or-apt
Now you can ";import big.data.DataSource"; in your source code (or any other class from the big.data
library that you need).

Note on Exceptions: all exceptions should be handled gracefully - they should be caught in the main, and the user
should be notified by a nice printout. Your messages should clearly indicate what the problem is (bad index, full list,
negative number, etc.). The program should continue to run normally after an exception is encountered. We will not
be checking Input Mismatch cases.

Pretty Printing: Here is a tutorial on how to print tables neatly using printf in java. It is highly encouraged that you
print the output neatly, as it makes grading much easier.
https://docs.oracle.com/javase/tutorial/java/data/numberformat.html

General Recommendations
You can feel free to add extra methods and variables if you need.

Note: please make sure that the menu is NOT case sensitive (so selecting A should be the same as selecting a).

Program Sample

4/27/22, 11:26 AM https://blackboard.stonybrook.edu/bbcswebdav/pid-1726048-dt-content-rid-14060695_1/courses/1224-CSE-214-SEC01-50585/h…

https://blackboard.stonybrook.edu/bbcswebdav/pid-1726048-dt-content-rid-14060695_1/courses/1224-CSE-214-SEC01-50585/hw7%283%29.html 4/5

Welcome to the Island Designer, because, when you're trying to stay above water, Seas get degrees!

please enter an url: https://www.cs.stonybrook.edu/~cse214/hw/hw7-images/hw7.xml

Map loaded.

Cities: //Alphabetical Order

Bones Beach
Composting Fields
Fire Hazard
Fishingville
Gatsby
Kingkongoma
Lawn City
North Spoon
Small Pear
South Spoon
Stream Foot
University

Road Capacity
--
Composting Fields to Small Pear 12
Lawn City to Small Pear 30
Hipster to Small Pear 14
Hipster to Small Pear 16
Lawn City to Hipster 16
Gatsby to Composting Fields 10
Fishingville to Lawn City 17
Fishingville to Gatsby 11
Bones Beach to Hipster 12
Bones Beach to Lawn City 8
Fire Hazard to Bones Beach 13
Kingkongoma to Fire Hazard 7
Kingkongoma to Lawn City 20
University to Kingkongoma 6
University to Fishingville 18
Stream Foot to University 6
Steam Foot to Kingkongoma 11
North Spoon to Stream Foot 15
South Spoon to Stream Foot 20

Menu:
 D) Destinations reachable (Depth First Search)
 F) Maximum Flow
 S) Shortest Path (Extra Credit)
 Q) Quit
Please select an option: D
Please enter a starting city: University
DFS Starting From University:
Fishingville,Gatsby,Composting Fields, Small Pear,Lawn City, Hipster,Kingkongoma,Fire Hazard,BonesBeach
Please select an option: D
Please enter a starting node: South Spoon
DFS results (destinations reachable):
Stream Foot, Kingkongoma, Lawn City, Small Pear, Fire Hazard, Bones Beach, Hipster, Fishingville,
Gatsby, Composting Fields
Please select an option: F
Please enter a starting city: University
Please enter a destination: Hipster
Routing:
University->Fishingville->Lawn City->Hipster: 16
University->Kingkongoma->Fire Hazard->Bones Beach->Hipster: 6
Maximum Flow: 22
//Routing doesn't matter, so long as the right routes appear, and for each path, the maximum flow
equals the minimum of available flow rate among the edges within route.
Please select an option: F
Please enter a starting city: University
Please enter a destination: South Spoon
No route available!
Please select an option: S //Extra credit
Please enter a starting node: Kingkongoma
Please enter a destination node: Small Pear
Path: Kingkongoma->Fire Hazard->Bones Beach->Hipster->Small Pear
Cost: 46
Please select an option: Q
You can go your own way! Goodbye!

Extra Credit

You will get up to 5 points extra credit for implementing the Djikstras algorithm.

4/27/22, 11:26 AM https://blackboard.stonybrook.edu/bbcswebdav/pid-1726048-dt-content-rid-14060695_1/courses/1224-CSE-214-SEC01-50585/h…

https://blackboard.stonybrook.edu/bbcswebdav/pid-1726048-dt-content-rid-14060695_1/courses/1224-CSE-214-SEC01-50585/hw7%283%29.html 5/5

Course Info | Schedule | Sections | Announcements | Homework | Exams | Help/FAQ | Grades |
HOME

