Introduction

Cube of a number: for a given number x, we define cube of $x = x \times x \times x$ and is denoted by x^3 .

Perfect cube: A natural number is said to be a perfect cube if it is the cube of some natural number.

Note: A given number is a perfect cube if it can be expressed as the product of triplets of equal factors.

Cube of a rational number:

$$\left(\frac{a}{b}\right)^3 = \frac{a^3}{b^3}$$

Properties of cubes of numbers

(a) The cube of every even number is even.

(b) The cube of every odd number is odd.

Examples:

Example 1 - Show that 189 is not a perfect cube.

Solution - First we resolve 189 into prime factors:

3	189	C
3	63	
3	21	~
7	7	
	1	

We can see $189 = 3 \times 3 \times 3 \times 7$

Here one triplet is formed and we are left with one more factor

Thus, 189 cannot be expressed as a product of triplets

Hence, 189 is not a perfect cube.

Example 2 - Show that 216 is a perfect cube. Find the number whose cube is 216.

Solution - First we resolve 216 into prime factors:

2	216
2	108
2	54
3	27
3	9
3	3
	1

We can see $216 = 2 \times 2 \times 2 \times 3 \times 3 \times 3$

$$=2^3 \times 3^3 = (2 \times 3)^3 = 6^3$$

Since 216 can be expressed as a product of triplets

Hence, 216 is a perfect cube.

And 6 is the number whose cube is 216.

Example 3 - What is the smallest number by which 3087 may be multiplied so that the product is a perfect cube?

Solution - First we resolve 3087 into prime factors:

3	3087
3	1029
7	343
7	49
7	7
	1

We have, $3087 = 7 \times 7 \times 7 \times 3 \times 3$

Since it can be seen that 3087 must be multiplied by 3 to be a perfect cube

Example 4 - What is the smallest number by which 392 may be divided so that the quotient is a perfect cube?

Solution - First we resolve 392 into prime factors:

2	392
2	196
2	98
7	49
7	7
	1

We have, $392 = 2 \times 2 \times 2 \times 7 \times 7$

Since it can be seen that 392 must be divided by (7×7) to be a perfect cube

=> 49 is the smallest number by which 392 must be divided so that quotient is a perfect cube

Example 5 - Find the cube of each of the following:

(a) (-7)

Solution: $(-7)^3 = (-7) \times (-7) \times (-7) = -343$

(b)
$$1\frac{2}{3}$$

Solution: $\left(1\frac{2}{3}\right)^3 = \left(\frac{5}{3}\right)^3 = \frac{5^3}{3^3} = \frac{5 \times 5 \times 5}{3 \times 3 \times 3} = \frac{125}{27}$

(c) 2.5

Solution:
$$(2.5)^3 = (\frac{25}{10})^3 = (\frac{5}{2})^3 = \frac{5^3}{2^3} = \frac{5 \times 5 \times 5}{2 \times 2 \times 2} = \frac{125}{8}$$

(d) 0.06

Solution: $(0.06)^3 = (\frac{6}{100})^3 = (\frac{3}{50})^3 = \frac{3^3}{(50)^3} = \frac{3 \times 3 \times 3}{50 \times 50 \times 50} = \frac{27}{125000}$

Exercise 4A

Question 1 - Evaluate:

(a) $(8)^3$

Solution: $8^3 = 8 \times 8 \times 8 = 512$

(b)
$$(15)^3$$

Solution: $(15)^3 = 15 \times 15 \times 15 = 3375$ (c) $(21)^3$ Solution: $(21)^3 = 21 \times 21 \times 21 = 9261$ (d) $(60)^3$ Solution: $(60)^3 = 60 \times 60 \times 60 = 216000$

Question 2 - Evaluate:

(a) $(1.2)^3$

Solution: $(1.2)^3 = (\frac{12}{10})^3 = (\frac{6}{5})^3 = \frac{6^3}{5^3} = \frac{6 \times 6 \times 6}{5 \times 5 \times 5} = \frac{216}{125}$ (b) $(3.5)^3$

Solution: $(3.5)^3 = (\frac{35}{10})^3 = (\frac{7}{2})^3 = \frac{7^3}{2^3} = \frac{7 \times 7 \times 7}{2 \times 2 \times 2} = \frac{343}{8}$

(c) $(0.8)^3$

Solution: $(0.8)^3 = (\frac{8}{10})^3 = (\frac{4}{5})^3 = \frac{4^3}{5^3} = \frac{4 \times 4 \times 4}{5 \times 5 \times 5} = \frac{64}{125}$

(d) $(0.05)^3$

Solution: $(0.05)^3 = (\frac{5}{100})^3 = (\frac{1}{20})^3 = \frac{1^3}{(20)^3} = \frac{1 \times 1 \times 1}{20 \times 20 \times 20} = \frac{1}{8000}$

(e) $(1.2)^3$

Solution: $(1.2)^3 = (\frac{12}{10})^3 = (\frac{6}{5})^3 = \frac{6^3}{5^3} = \frac{6 \times 6 \times 6}{5 \times 5 \times 5} = \frac{216}{125}$

Question 3 - Evaluate:

(a)
$$(\frac{4}{7})^3$$

Solution: $(\frac{4}{7})^3 = \frac{4^3}{7^3} = \frac{4 \times 4 \times 4}{7 \times 7 \times 7} = \frac{64}{343}$
(b) $(\frac{10}{11})^3$

Solution: $\left(\frac{10}{11}\right)^3 = \frac{10^3}{11^3} = \frac{10 \times 10 \times 10}{11 \times 11 \times 11} = \frac{1000}{1331}$ (c) $\left(\frac{1}{15}\right)^3$ Solution: $\left(\frac{1}{15}\right)^3 = \frac{1^3}{(15)^3} = \frac{1 \times 1 \times 1}{15 \times 15 \times 15} = \frac{1}{3375}$ (d) $\left(1\frac{3}{10}\right)^3$ Solution: $\left(1\frac{3}{10}\right)^3 = \left(\frac{13}{10}\right)^3 = \frac{(13)^3}{(10)^3} = \frac{13 \times 13 \times 13}{10 \times 10 \times 10} = \frac{2197}{1000}$

Question 4 – Which of the following numbers are perfect cubes? In case of perfect cube, find the number whose cube is the given number.

(a) 125

Solution - First we resolve 125 into prime factors:

5	125
5	25
5	5
	1

We can see $125 = 5 \times 5 \times 5$

= 5³

Since 125 can be expressed as a product of triplet

Hence, 125 is a perfect cube.

And 5 is the number whose cube is 125.

(b) 243

Solution - First we resolve 243 into prime factors:

3	243
3	81
3	27
3	9
3	3
	1

We can see $243 = 3 \times 3 \times 3 \times 3 \times 3$

Since 243 cannot be expressed as a product of triplets

Hence, 243 is not a perfect cube.

(c) 343

Solution - First we resolve 343 into prime factors:

7	343
7	49
7	7
	1

We can see $343 = 7 \times 7 \times 7$

 $= 7^{3}$

Since 343 can be expressed as a product of triplet

Hence, 343 is a perfect cube.

And 7 is the number whose cube is 343.

(d) 256

Solution - First we resolve 256 into prime factors:

256
128
64 32 16
32
16
8
4 2
2
1

We can see $256 = 2 \times 2$

Since 256 cannot be expressed as a product of triplets

Hence, 256 is not a perfect cube.

(e) **8000**

Solution - First we resolve 8000 into prime factors:

2	8000
2	4000
2 2	2000
2	1000
2	500
2	250
2 5 5	125
	25
5	5
	1

We can see $8000 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 5 \times 5 \times 5$

$$= 2^3 \times 2^3 \times 5^3 = (2 \times 2 \times 5)^3 = (20)^3$$

Since 8000 can be expressed as a product of triplets

Hence, 8000 is a perfect cube.

And 20 is the number whose cube is 8000.

(f) 9261

Solution - First we resolve 9261 into prime factors:

3	9261
3	3087
3	1029
7	343
7	49
7	7
	1

We can see $9261 = 3 \times 3 \times 3 \times 7 \times 7 \times 7$

$$=3^3 \times 7^3 = (3 \times 7)^3 = (21)^3$$

Since 9261 can be expressed as a product of triplets

Hence, 9261 is a perfect cube.

And 21 is the number whose cube is 9261.

(g) 5324

Solution - First we resolve 5324 into prime factors:

2	5324
2	2662
11	1331
11	121
11	11
	1

We can see $5324 = 11 \times 11 \times 11 \times 2 \times 2$

Since 5324 cannot be expressed as a product of triplets

Hence, 5324 is not a perfect cube.

(h) 3375

Solution - First we resolve 3375 into prime factors:

3	3375
3	1125
3 3 5	375
5	125
5	25 5
5	5
	1

We can see $3375 = 3 \times 3 \times 3 \times 5 \times 5 \times 5$

$$=3^3 \times 5^3 = (3 \times 5)^3 = (15)^3$$

Since 3375 can be expressed as a product of triplets

Hence, 3375 is a perfect cube.

And 15 is the number whose cube is 3375.

Question 5 - Which of the following are the cubes of even numbers?

- (a) 216
- (b) 729
- (c) 512
- (d) 3375

(e) 1000

Solution - Since the cube of every even number is even.

Thus, 216, 512 and 1000 are the cubes of even numbers.

Question 6 - Which of the following are the cubes of odd numbers?

- (a) 125
- (b) **343**
- (c) 1728
- (d) 4096
- (e) 9261

Solution - Since the cube of every odd number is odd.

Thus, 125, 343 and 9261 are the cubes of even numbers.

Question 7 - Find the smallest number by which 1323 must be multiplied so that the product is a perfect cube.

Solution - First we resolve 1323 into prime factors:

3	1323
3	441
3	147
7	49
7	7
25	1

We have, $1323 = 3 \times 3 \times 3 \times 7 \times 7$

Since it can be seen that 1323 must be multiplied by 7 to be a perfect cube

Question 8 - Find the smallest number by which 2560 must be multiplied so that the product is a perfect cube

Solution - First we resolve 2560 into prime factors:

2	2560
2	1280
2 2 2 2 2 2 2 2 2 2 5	640
2	320
2	160
2	80
2	40
2	20
2	10
5	5
	1

We have, $2560 = 2 \times 5$

Since it can be seen that 2560 must be multiplied by 5 to be a perfect cube

Question 9 - What is the smallest number by which 1600 must be divided so that the quotient is a perfect cube?

Solution - First we resolve 1600 into prime factors:

2	1600
2	800
2	400
2	200
2	100
	50
2 5 5	25
5	5
	1

We have, $1600 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 5 \times 5$

Since it can be seen that 1600 must be divided by (5×5) to be a perfect cube

=> 25 is the smallest number by which 1600 must be divided so that quotient is a perfect cube

Question 10 - Find the smallest number by which 8788 must be divided so that the quotient is a perfect cube.

Solution - First we resolve 8788 into prime factors:

2	8788
2	4394
13	2197
13	169
13	13
	1

We have, $8788 = 2 \times 2 \times 13 \times 13 \times 13$

Since it can be seen that 8788 must be divided by (2×2) to be a perfect cube

=> 4 is the smallest number by which 8788 must be divided so that quotient is a perfect cube.

Short-cut method for finding the cube of a two-digit number

We know that $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$

Method: For finding the cube of a two digit number with tens digit = a and unit digit=b, we make four columns headed by a^3 , $(3a^2b)$, $(3ab^2)$, and b^3 .

This method is as same as the column method for squaring a two digit number.

a ²	a ²	<i>b</i> ²	b^2
× a	× 3 <i>b</i>	× 3a	× <i>b</i>
a ³	3a ² b	$3b^2a$	b^3

Example 1 - Find the value of $(29)^3$ by the short cut method.

Solution - We have a = 2 and b = 9

a ²	a ²	b^2	b ²
<u>× a</u>	× 3 <i>b</i>	× 3a	× <i>b</i>
<i>a</i> ³	$3a^2b$	3 <i>b</i> ² <i>a</i>	b^3

4	4	81	81
<u>× 2</u>	× 27	× 6	× 9
8	108	486	72 <u>9</u>
+16	+55	+72	
<u>24</u>	16 <u>3</u>	55 <u>8</u>	

Thus, $(29)^3 = 24389$

Example 2 - Find the value of $(71)^3$ by the short cut method.

Solution - We have a = 7 and b = 1

a ²	<i>a</i> ²	b^2	b ²
× a	× 3 <i>b</i>	× 3a	× b
a ³	3 <i>a</i> ² <i>b</i>	3 <i>b</i> ² <i>a</i>	b^3

			[]
49	49	1	1
× 7	× 3	× 21	× 1
343	147	2 <u>1</u>	<u>1</u>
+14	+2		
<u>357</u>	14 <u>9</u>		

Thus, $(71)^3 = 357911$

Exercise 4B

Find the value of each of the following using the short-cut method:

Question $1 - (25)^3$

Solution - We have a = 2 and b = 5

a ²	a ²	b^2	<i>b</i> ²
× a	× 3 <i>b</i>	× 3a	× <i>b</i>
<i>a</i> ³	$3a^2b$	$3b^2a$	b^3

4	4	25	25
× 2	× 15	× 6	× 5
8	60	150	12 <u>5</u>
+7	+16	+12	
<u>15</u>	7 <u>6</u>	16 <u>2</u>	

Thus, $(25)^3 = 15625$

Question 2 - $(47)^3$

Solution - We have a = 4 and b = 7

a ²	a ²	<i>b</i> ²	b^2
<u>× a</u>	× 3 <i>b</i>	× 3a	× <i>b</i>
a ³	$3a^2b$	3 <i>b</i> ² <i>a</i>	b^3

16	16	49	49
<u>× 4</u>	× 21	× 12	× 7
64	336	588	34 <u>3</u>
	+62	+34	
<u>103</u>	39 <u>8</u>	62 <u>2</u>	

Thus, $(47)^3 = 103823$

Question $3 - (68)^3$

Solution - We ha	ve $a = 6$ and $b = 8$		
a ²	a ²	b^2	<i>b</i> ²
× a	× 3 <i>b</i>	× 3a	×b
a ³	$3a^2b$	$3b^2a$	b^3
J. D. G.			

36	36	64	64
× 6	× 24	× 18	× 8
216	864	1152	51 <u>2</u>
+98	+120	+51	
<u>314</u>	98 <u>4</u>	120 <u>3</u>	

Thus, $(68)^3 = 314432$

Question $4 - (84)^3$

Solution - We have a = 8 and b = 4

a ²	a ²	b^2	b^2
<u>× a</u>	× 3 <i>b</i>	× 3a	× <i>b</i>
a ³	$3a^2b$	3 <i>b</i> ² <i>a</i>	b^3

64	64	16	16
<u>× 8</u>	× 12	× 24	× 4
512	768	384	6 <u>4</u>
+80	+39	+6	
<u>592</u>	80 <u>7</u>	39 <u>0</u>	

Thus, $(84)^3 = 592704$

Cube Roots

The cube root of a number x is that number whose cube gives x. It is denoted by $\sqrt[3]{x}$

Method of finding the cube root of a given number by factorization:

Step1: Express the given number as the product of primes.

Step2: Make groups in triplets of the same prime.

Step3: Find the product of primes, choosing one from each triplet.

Step4: This product is the required cube root of the given number.

Cube root of a negative perfect cube:

 $\sqrt[3]{(-a)} = -a$, for any positive integer 'a'

Cube root of product of integers

$$\sqrt[3]{ab} = (\sqrt[3]{a} \times \sqrt[3]{b})$$

Cube root of a rational number

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Examples:

Example 1 - Evaluate $\sqrt[3]{216}$

Solution - First we resolve 216 into prime factors:

2	216
2	108
2	54
3	27
3	9
3	3
	1

We see that $216 = 2 \times 2 \times 2 \times 3 \times 3 \times 3$

Thus, $\sqrt[3]{216} = \sqrt[3]{2 \times 2 \times 2 \times 3 \times 3 \times 3}$

 $= 2 \times 3 = 6$

Example 2 - Evaluate $\sqrt[3]{2744}$

Solution - First we resolve 2744 into prime factors:

2	2744
2	1372
2	686
7	343
7	49
7	7
	1

We see that $2744 = 2 \times 2 \times 2 \times 7 \times 7 \times 7$

Thus, $\sqrt[3]{2744} = \sqrt[3]{2 \times 2 \times 2 \times 7 \times 7 \times 7}$

 $= 2 \times 7 = 14$

Example 3 - Find the cube root of (-1000)

Solution - We have to find $\sqrt[3]{-1000}$ '

Since $\sqrt[3]{-1000} = -\sqrt[3]{1000}$

We resolve 1000 into prime factors:

2	1000
2	500
2	250
2 5	125
5	25
5	5
	1

We see that $1000 = 2 \times 2 \times 2 \times 5 \times 5 \times 5$

Thus, $\sqrt[3]{1000} = \sqrt[3]{2 \times 2 \times 2 \times 5 \times 5 \times 5}$

 $= 2 \times 5 = 10$

Thus, $\sqrt[3]{-1000} = -\sqrt[3]{1000} = -10$

Example 4 - Evaluate $\sqrt[3]{125 \times 64}$

Solution - Since $\sqrt[3]{ab} = (\sqrt[3]{a} \times \sqrt[3]{b})$

 $\sqrt[3]{125 \times 64} = \sqrt[3]{8000}$

We resolve 8000 into prime factors:

2 2	8000
2	4000
2	2000
2	1000
2	500
2	250
5	125
5	25
5	5
	1

We can see $8000 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 5 \times 5 \times 5$

$$= 2^3 \times 2^3 \times 5^3 = (2 \times 2 \times 5)^3 = (20)^3$$

Thus, $\sqrt[3]{8000} = \sqrt[3]{20 \times 20 \times 20} = 20$

Example 5 - Evaluate $\sqrt[3]{216 \times (-343)}$

Solution - Since $\sqrt[3]{ab} = (\sqrt[3]{a} \times \sqrt[3]{b})$

Thus, $\sqrt[3]{216 \times (-343)} = \sqrt[3]{216} \times \sqrt[3]{-343}$

We resolve 216 and 343 into prime factors

6	216	7	343
6	36	7	49
6	6	7	7
	1		1

We see that $216 = 6 \times 6 \times 6$

 $343 = 7 \times 7 \times 7$

Thus,
$$\sqrt[3]{216 \times (-343)} = \sqrt[3]{216} \times \sqrt[3]{-343} = (\sqrt[3]{6 \times 6 \times 6}) \times ((-1)\sqrt[3]{7 \times 7 \times 7})$$

 $= 6 \times (-7) = -42$

Example 6 - Evaluate

(a) $\sqrt[3]{\frac{216}{2197}}$

Solution - Since $\sqrt[3]{\frac{a}{b} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}}$

Thus, $\sqrt[3]{\frac{216}{2197}} = \frac{\sqrt[3]{216}}{\sqrt[3]{2197}}$

We resolve 216 and 2197 into prime factors

6	216
6	36
6	6
	1

13	2197
13	169
13	13
	1

We see that $216 = 6 \times 6 \times 6$

 $2197 = 13 \times 13 \times 13$

Thus,
$$\sqrt[3]{\frac{216}{2197}} = \frac{\sqrt[3]{216}}{\sqrt[3]{2197}} = \frac{\sqrt[3]{6 \times 6 \times 6}}{\sqrt[3]{13 \times 13 \times 13}} = \frac{6}{13}$$

(b)
$$\sqrt[3]{\frac{-125}{512}}$$

Solution - Since $\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$

Thus,
$$\sqrt[3]{\frac{-125}{512}} = \frac{-\sqrt[3]{125}}{\sqrt[3]{512}}$$

We resolve 125 and 512 into prime factors

5	125
5	25
5	5
	1

8	512
8	64
8	8
	1

We see that $125 = 5 \times 5 \times 5$

 $512 = 8 \times 8 \times 8$

Thus,
$$\sqrt[3]{\frac{-125}{512}} = \frac{-\sqrt[3]{125}}{\sqrt[3]{512}} = \frac{-\sqrt[3]{5\times5\times5}}{\sqrt[3]{8\times8\times8}} = \frac{-5}{8}$$

Exercise 4C

Evaluate:

Question 1: $\sqrt[3]{64}$

Solution - First we resolve 64 into prime factors:

2	64
2	32
2	16
2	8
2	4
2	2
	1

We see that $64 = 2 \times 2 \times 2 \times 2 \times 2 \times 2$

Thus, $\sqrt[3]{64} = \sqrt[3]{2 \times 2 \times 2 \times 2 \times 2 \times 2} = 2 \times 2 = 4$

Question 2: $\sqrt[3]{343}$

Solution - First we resolve 343 into prime factors:

7	343
7	49
7	7
	1

We see that $343 = 7 \times 7 \times 7$

Thus, $\sqrt[3]{343} = \sqrt[3]{7 \times 7 \times 7} = 7$

Question 3: $\sqrt[3]{729}$

Solution - First we resolve 729 into prime factors:

3	729
3	243
3	81
3	27
3	9
3	3
	1

We see that $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3$

Thus,
$$\sqrt[3]{729} = \sqrt[3]{3 \times 3 \times 3 \times 3 \times 3 \times 3} = 3 \times 3 = 9$$

Question 4: $\sqrt[3]{1728}$

Solution - First we resolve 1728 into prime factors:

2	1728
2 2 2	864
	432
2	216
2 2	108
2	54
3	27
3	9
3	3
	1

We see that $1728 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3$

Thus, $\sqrt[3]{1728} = \sqrt[3]{3 \times 3 \times 3 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2} = 2 \times 2 \times 3 = 12$

Question 5: $\sqrt[3]{9261}$

Solution - First we resolve 9261 into prime factors:

3	ί.	9261
3		3087
3		1029
7		<mark>34</mark> 3
7		49
7		7
		1
7	× 3 × 3	× 3

We see that $9261 = 7 \times 7 \times 7 \times 3 \times 3 \times 3$

Thus, $\sqrt[3]{9261} = \sqrt[3]{3 \times 3 \times 3 \times 7 \times 7 \times 7} = 7 \times 3 = 21$

Question 6: $\sqrt[3]{4096}$

Solution - First we resolve 4096 into prime factors:

2	4096
2	2048
2	1024
2	512
2	256
2	128
2	64
2	32
2	16
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8
2	4 2
2	2
	1

Question 7: $\sqrt[3]{8000}$

Solution - First we resolve 8000 into prime factors:

2	8000	
2	4000	
2 2 2	2000	
2	1000	2
2	500	
2	250	
2 2 5 5 5 5	125	
5	25	
5	5	
	1	1

We see that $8000 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 5 \times 5 \times 5$

Thus, $\sqrt[3]{8000} = \sqrt[3]{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 5 \times 5 \times 5} = 2 \times 2 \times 5 = 20$

Question 8: $\sqrt[3]{3375}$

Solution - First we resolve 3375 into prime factors:

3	3375
3	1125
3	375
5	125
5	25
5	5
	1

We see that $3375 = 3 \times 3 \times 3 \times 5 \times 5 \times 5$

Thus, $\sqrt[3]{3375} = \sqrt[3]{3 \times 3 \times 3 \times 5 \times 5 \times 5} = 3 \times 5 = 15$

Question 9: $\sqrt[3]{-216}$

Solution - Since $\sqrt[3]{-216} = -\sqrt[3]{216}$

First we resolve 216 into prime factors:

2	216
2	108
2	54
3	27
3	9
3	3
	1

We see that $216 = 2 \times 2 \times 2 \times 3 \times 3 \times 3$

Thus, $\sqrt[3]{-216} = -\sqrt[3]{2 \times 2 \times 2 \times 3 \times 3 \times 3}$

 $= -2 \times 3 = -6$

Question 10: $\sqrt[3]{-512}$

Solution - Since $\sqrt[3]{-512} = -\sqrt[3]{512}$

First we resolve 512 into prime factors:

2	512
2	256
2	128
2	64
2	32
2	16
2	8
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4
2	2
	1

We see that $512 = 2 \times 2$

Thus, $\sqrt[3]{-512} = -\sqrt[3]{2 \times 2 \times 2}$

 $= -2 \times 2 \times 2 = -8$

Question 11: $\sqrt[3]{-1331}$

Solution - Since $\sqrt[3]{-1331} = -\sqrt[3]{1331}$

First we resolve 1331 into prime factors:

11	1331
11	121
11	11
ć	1

We see that $1331 = 11 \times 11 \times 11$

Thus, $\sqrt[3]{-1331} = -\sqrt[3]{11 \times 11 \times 11}$

= -11

Question 12: $\sqrt[3]{\frac{27}{64}}$ Solution - Since $\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$ Thus, $\sqrt[3]{\frac{27}{64}} = \frac{\sqrt[3]{27}}{\sqrt[3]{64}}$ We resolve 27 and 64 into prime factors

3	27
3	9
3	3
	1

2	64
2	32
2	16
2	8
2	4
2	2
	1

We see that $27 = 3 \times 3 \times 3$

 $64 = 2 \times 2 \times 2 \times 2 \times 2 \times 2$

Thus, $\sqrt[3]{\frac{27}{64}} = \frac{\sqrt[3]{27}}{\sqrt[3]{64}} = \frac{\sqrt[3]{3\times3\times3}}{\sqrt[3]{2\times2\times2\times2\times2\times2}} = \frac{3}{2\times2} = \frac{3}{4}$

Question 13: $\sqrt[3]{\frac{125}{216}}$

Solution - Since $\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$

Thus, $\sqrt[3]{\frac{125}{216}} = \frac{\sqrt[3]{125}}{\sqrt[3]{216}}$

We resolve 125 and 216 into prime factors

5	125	2	216
5	25	 2	108
5	5	2	108 54
	1	3	27
		3	9
		3	3
			1

We see that $125 = 5 \times 5 \times 5$

 $216 = 2 \times 2 \times 2 \times 3 \times 3 \times 3$

Thus,
$$\sqrt[3]{\frac{125}{216}} = \frac{\sqrt[3]{125}}{\sqrt[3]{216}} = \frac{\sqrt[3]{5\times5\times5}}{\sqrt[3]{2\times2\times2\times3\times3\times3}} = \frac{5}{2\times3} = \frac{5}{6}$$

Question 14: $\sqrt[3]{\frac{-27}{125}}$ Solution - Since $\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$ Thus, $\sqrt[3]{\frac{-27}{125}} = \frac{-\sqrt[3]{27}}{\sqrt[3]{125}}$

We resolve 125 and 27 into prime factors

5	125	3	27
5	25	3	9
5	5	3	3
	1		1

We see that $125 = 5 \times 5 \times 5$

 $27 = 3 \times 3 \times 3$

Thus,
$$\sqrt[3]{\frac{-27}{125}} = \frac{-\sqrt[3]{27}}{\sqrt[3]{125}} = \frac{-\sqrt[3]{3\times3\times3}}{\sqrt[3]{5\times5\times5}} = \frac{-3}{5}$$

Question 15: $\sqrt[3]{\frac{-64}{343}}$

Solution - Since $\sqrt[3]{\frac{a}{b} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}}$

Thus, $\sqrt[3]{\frac{-64}{343}} = \frac{-\sqrt[3]{64}}{\sqrt[3]{343}}$

We resolve 64 and 343 into prime factors

2	64
2	32
2	16
2	8
2	4
2	2
	1

7	343
7	49
7	7
	1

We see that $64 = 2 \times 2 \times 2 \times 2 \times 2 \times 2$

 $343 = 7 \times 7 \times 7$

Thus, $\sqrt[3]{\frac{-64}{343}} = \frac{-\sqrt[3]{64}}{\sqrt[3]{343}} = \frac{-\sqrt[3]{2 \times 2 \times 2 \times 2 \times 2 \times 2}}{\sqrt[3]{7 \times 7 \times 7}} = \frac{-(2 \times 2)}{7} = \frac{-4}{7}$

Question 16: $\sqrt[3]{64 \times 729}$

Solution - Since $\sqrt[3]{ab} = (\sqrt[3]{a} \times \sqrt[3]{b})$

 $\sqrt[3]{64 \times 729} = \sqrt[3]{64} \times \sqrt[3]{729}$

We resolve 64 and 729 into prime factors:

2	64	3	729
2	32	3	243
2	16	3	81
2	8	3	27
2	4	3	9
2	2	3	3
	1		1

We can see $64 = 2 \times 2 \times 2 \times 2 \times 2 \times 2$

$$= 2^3 \times 2^3 = (2 \times 2)^3 = (4)^3$$

 $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3$

$$=3^3 \times 3^3 = (3 \times 3)^3 = (9)^3$$

Thus, $\sqrt[3]{64 \times 729} = \sqrt[3]{64} \times \sqrt[3]{729} = 4 \times 9 = 36$

Question 17: $\sqrt[3]{\frac{729}{1000}}$ Solution - Since $\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$ Thus, $\sqrt[3]{\frac{729}{1000}} = \frac{\sqrt[3]{729}}{\sqrt[3]{1000}}$

We resolve 729 and 1000 into prime factors

3	729
3	243
3	81
3	27
3	9
3	3
	1

2	1000
2	500
2	250
5	125
5	25
5	5
	1

We see that $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3$

 $1000 = 2 \times 2 \times 2 \times 5 \times 5 \times 5$

Thus, $\sqrt[3]{\frac{729}{1000}} = \frac{\sqrt[3]{729}}{\sqrt[3]{1000}} = \frac{\sqrt[3]{3\times3\times3\times3\times3\times3\times3}}{\sqrt[3]{2\times2\times2\times5\times5\times5}} = \frac{3\times3}{2\times5} = \frac{9}{10}$

Question 18: $\sqrt[3]{\frac{-512}{343}}$

Solution - Since $\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$

Thus, $\sqrt[3]{\frac{-512}{343}} = \frac{-\sqrt[3]{512}}{\sqrt[3]{343}}$

We resolve 512 and 343 into prime factors

2	512
2	256
2	128
2	64
2	32
2	16
2	8
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 2
2	2
	1

	7	343
	7	49
<u>.</u>	7	7
		1

 $343 = 7 \times 7 \times 7$

Thus,
$$\sqrt[3]{\frac{-512}{343}} = \frac{-\sqrt[3]{512}}{\sqrt[3]{343}} = \frac{-\sqrt[3]{2\times2\times2\times2\times2\times2\times2\times2\times2\times2\times2\times2}}{\sqrt[3]{7\times7\times7}} = \frac{-(2\times2\times2)}{7} = \frac{-8}{7}$$

Exercise 4D

Question 1 - Which of the following numbers is a perfect cube?

- (a) 141
- (b) **294**
- (c) 216
- (d) 496

Solution (a) 141

We resolve 141 into prime factors

3	141
47	47
	1

 $141 = 3 \times 47$

Since 141 cannot be expressed as a product of triplets

Hence, 141 is not a perfect cube.

(b) 294

We resolve 294 into prime factors

2	294
3	147
7	49
7	7
	1

 $294 = 2 \times 3 \times 7 \times 7$

Since 294 cannot be expressed as a product of triplets

Hence, 294 is not a perfect cube.

(c) 216

We resolve 216 into prime factors

2	216
2	108
2	54
3	27
3	9
3	3
	1

 $216 = 2 \times 2 \times 2 \times 3 \times 3 \times 3$

Since 216 can be expressed as a product of triplets.

Hence, 216 is a perfect cube.

(d) 496

We resolve 496 into prime factors

2	496
2	248
2	124
2	62
31	31
	1

 $496 = 2 \times 2 \times 2 \times 2 \times 31$

Since 496 cannot be expressed as a product of triplets

Hence, 496 is not a perfect cube.

Question 2 - Which of the following numbers is a perfect cube?

- (a) 1152
 (b) 1331
 (c) 2016
- (d) 739

Solution (a) 1152

We resolve 1152 into prime factors

2	1152
2	576
2	288
2	144
2	72
2	36
2 2 2 2 2 2 2 2 2 3 3 3	18
3	9
3	3
	1

 $1152 = 2 \times 3 \times 3$

Since 1152 cannot be expressed as a product of triplets

Hence, 115 is not a perfect cube.

(b) 1331

We resolve 1331 into prime factors

11	1331
11	121
11	11
	1

 $1331 = 11 \times 11 \times 11$

Since 1331 can be expressed as a product of triplets

Hence, 1331 is a perfect cube.

(c) 2016

We resolve 2016 into prime factors

2	2016
2	1008
2	504
2 2	252
2	126
3	63
3	21
7	7
	1

 $2016 = 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 7$

Since2016 cannot be expressed as a product of triplets

Hence, 2016 is not a perfect cube.

(d) 739

Since 739 is a prime number.

 $739 = 1 \times 739$

Since 739 cannot be expressed as a product of triplets

Hence, 739 is not a perfect cube.

Question 3:
$$\sqrt[3]{512} = ?$$

Solution - First we resolve 512 into prime factors:

2	512
2	256
2	128
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	64 32 16
2	32
2	16
2	8
2	8 4 2
2	2
	1

Thus, $\sqrt[3]{512} = \sqrt[3]{2 \times 2 \times 2}$

 $= 2 \times 2 \times 2 = 8$

Question 4: $\sqrt[3]{125 \times 64}$

Solution - Since $\sqrt[3]{ab} = (\sqrt[3]{a} \times \sqrt[3]{b})$

 $\sqrt[3]{125 \times 64} = \sqrt[3]{8000}$

We resolve 8000 into prime factors:

2	8000
2	4000
2 2	2000
	1000
2	500
2 5	250
5	125
5	25
5	5
	1

We can see $8000 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 5 \times 5 \times 5$

$$= 2^3 \times 2^3 \times 5^3 = (2 \times 2 \times 5)^3 = (20)^3$$

Thus,
$$\sqrt[3]{8000} = \sqrt[3]{20 \times 20 \times 20} = 20$$

Question 5: $\sqrt[3]{\frac{64}{343}}$

Solution - Since $\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$

Thus, $\sqrt[3]{\frac{64}{343}} = \frac{\sqrt[3]{64}}{\sqrt[3]{343}}$

We resolve 64 and 343 into prime factors

7	343
7	49
7	7
	1

2	64
2	32
2	16
2	8
2	4
2	2
	1

We see that $64 = 2 \times 2 \times 2 \times 2 \times 2 \times 2$

 $343 = 7 \times 7 \times 7$

Thus,
$$\sqrt[3]{\frac{64}{343}} = \frac{\sqrt[3]{64}}{\sqrt[3]{343}} = \frac{\sqrt[3]{2 \times 2 \times 2 \times 2 \times 2 \times 2}}{\sqrt[3]{7 \times 7 \times 7}} = \frac{(2 \times 2)}{7} = \frac{4}{7}$$

Question 6:
$$\sqrt[3]{\frac{-512}{729}}$$

Solution - Since $\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$
Thus, $\sqrt[3]{\frac{-512}{729}} = \frac{-\sqrt[3]{512}}{\sqrt[3]{729}}$

We resolve 512 and 729 into prime factors

2	512	
2	256	
2	128	
2	64 32	
2	32	
2	16	
2	8	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 2	
2	2	
	1	

3	729
3	243
3	81
3	27
3	9
3	3
	1

 $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3$

Thus,
$$\sqrt[3]{\frac{-512}{729}} = \frac{-\sqrt[3]{512}}{\sqrt[3]{729}} = \frac{-\sqrt[3]{2\times2\times2\times2\times2\times2\times2\times2\times2\times2\times2\times2}}{\sqrt[3]{3\times3\times3\times3\times3\times3}} = \frac{-(2\times2\times2)}{3\times3} = \frac{-8}{9}$$

Question 7 - By what least number should 648 be multiplied to get a perfect cube?

Solution - First we resolve 648 into prime factors:

648
324
162
81
27
9
3
1

We have, $648 = 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3$

Since it can be seen that 648 must be multiplied by $(3 \times 3 = 9)$ to be a perfect cube

Question 8 - By what least number should 1536 be divided to get a perfect cube?

Solution - First we resolve 1536 into prime factors:

2	1536
2 2	768
2	384
2 2	192
2	96
2	48
2	24
2	12
2 2 2 2 2 2 3	6
3	3
	1

We have, $1536 = 2 \times 3$

Since it can be seen that 1536 must be divided by 3 to be a perfect cube

=> 3 is the smallest number by which 1536 must be divided so that quotient is a perfect cube

Question 9: $(1\frac{3}{10})^3 = ?$

Solution - Since $1\frac{3}{10} = \frac{13}{10}$

We have to find $(\frac{13}{10})^3$

$$\left(\frac{13}{10}\right)^3 = \frac{13 \times 13 \times 13}{10 \times 10 \times 10} = \frac{2197}{1000} = 2\frac{197}{1000}$$

Question 10: $(0.8)^3 = ?$

Solution - Since $0.8 = \frac{8}{10}$

We have to find $\left(\frac{8}{10}\right)^3$

 $\left(\frac{8}{10}\right)^3 = \frac{8 \times 8 \times 8}{10 \times 10 \times 10} = \frac{512}{1000} = 0.512$