Introduction

Basic terms and formulas to be used in this chapter:

1) Curve: A plane figure formed by joining a number of points with the help of pencil without lifting it.

2) Open curve: A curve that does not end at the starting point.

3) Closed curve: A curve that starts and ends at the same point.

4) Polygon: It is a simple closed curve which is made up of only line segments. There are two types of polygons

(a) Concave polygon: A polygon in which at least one angle is more than 180%

(b) Convex polygon: A polygon in which each angle is less than 180°

5) Regular polygon: A polygon in which sides and angles are equal.

6) Irregular polygon: Polygons which are not regular are known as irregular polygons.

For a regular polygon of n side

(a) each exterior angle = $\frac{360^0}{n}$

(b) each interior angle = 180° - (each exterior angle)

In a convex polygon of n sides,

- (a) sum of all exterior angles = $4 \operatorname{right}$ angles
- (b) sum of all interior angles = (2n 4) right angles

Number of diagonals in a polygons of n sides = $\frac{n(n-3)}{2}$

Examples

Example 1 – Find the measure of each exterior angle of a regular polygon of:

(a) 8 sides

Solution - Each exterior angle of a regular polygon of 8 sides = $\frac{360^{\circ}}{8} = 45^{\circ}$

(b) 9 sides

Solution - Each exterior angle of a regular polygon of 9 sides = $\frac{360^0}{9} = 40^0$

(c) 12 sides

Solution - Each exterior angle of a regular polygon of 12 sides = $\frac{360^{\circ}}{12} = 30^{\circ}$

Example 2 – Is it possible to have a regular polygon each of whose exterior angles is 25°?

Solution - Given that each of exterior angle of regular polygon = 25°

We know that each exterior angle $=\frac{360^{\circ}}{n}$ where n is the number of sides

 $=>\frac{360^{\circ}}{n}=25^{\circ}=>n=\frac{360}{25}=14.4$ is not a whole number

Thus, it is not possible to have a regular polygon each of whose exterior angle is 25°

Example 3 – Is it possible to have a regular polygon each of whose interior angles is 45°?

Solution - Given that each of interior angle of regular polygon = 45°

Thus, each exterior angle = $180 - 45 = 135^{\circ}$

We know that each exterior angle = $\frac{360^{\circ}}{n}$ where n is the number of sides

$$=>\frac{360^{\circ}}{n}=135^{\circ}=>n=\frac{360}{135}=2.67$$
 is not a whole number

Thus, it is not possible to have a regular polygon each of whose interior angle is 45°

Example 4 – Find the measure of each interior angle of a regular

(a) Pentagon

Solution - We know that each exterior angle = $\frac{360^0}{n}$ where n is the number of sides In pentagon, number of sides (n) = 5

Each exterior angle $=\frac{360^{\circ}}{5}=72$

Thus, each interior angle = $180 - 72 = 108^{\circ}$

(b) Hexagon

Solution - We know that each exterior angle = $\frac{360^{\circ}}{n}$ where n is the number of sides

In hexagon, number of sides (n) = 6

Each exterior angle = $\frac{360^{\circ}}{6} = 60$

Thus, each interior angle = $180 - 60 = 120^{\circ}$

(c) Octagon

Solution - We know that each exterior angle = $\frac{360^{\circ}}{n}$ where n is the number of sides

In octagon, number of sides (n) = 8

Each exterior angle $=\frac{360^{\circ}}{8}=45$

Thus, each interior angle = $180 - 45 = 135^{\circ}$

(d) Polygon of 12 sides

Solution - We know that each exterior angle = $\frac{360^{\circ}}{n}$ where n is the number of sides

Number of sides (n) = 12

Each exterior angle =
$$\frac{360^{\circ}}{12}$$
 = 30

Thus, each interior angle = $180 - 30 = 150^{\circ}$

Example 5 – What is the minimum interior angle possible for a regular polygon?

Solution - Since we know that with the decrease in number of sides of a regular polygon, each of its exterior angle increases thus each of its interior angle decreases.

And equilateral triangle is a regular polygon with minimum number of sides. We know that each angle of equilateral triangle is 60° so the the minimum interior angle possible for a regular polygon is 60°.

Example 6 – What is the maximum exterior angle possible for a regular polygon?

Solution - Since we know that with the decrease in number of sides of aregular polygon, each of its exterior angle increases.

And equilateral triangle is a regular polygon with minimum number of sides. We know that each exterior angle of equilateral triangle is 120° so the the maximum exterior angle possible for a regular polygon is 120°.

Example 7 – What is the sum of all interior angles of a polygon of

(a) n sides

Solution - We know that sum of all interior angles of a polygon = (2n - 4) right angles

(b) 7 sides

Solution - We know that sum of all interior angles of a polygon = (2n - 4) right angles

= 2(7) - 4 = 14 - 4 = 10 right angles

(c) 8 sides

Solution - We know that sum of all interior angles of a polygon = (2n - 4) right angles

= 2(8) - 4 = 16 - 4 = 12 right angles

(d) 10 sides

Solution - We know that sum of all interior angles of a polygon = (2n - 4) right angles

= 2(10) - 4 = 20 - 4 = 16 right angles

Example 8 – What is the number of diagonals in a

(a) Quadrilateral

Solution - Number of sides = 4

We know that number of diagonals in a polygon of n sides = $\frac{n(n-3)}{2}$

$$=\frac{4(4-3)}{2}=2$$

(b) pentagon

Solution - Number of sides = 5

We know that number of diagonals in a polygon of n sides = $\frac{n(n-3)}{2}$

$$=\frac{5(5-3)}{2}=5$$

(c) hexagon

Solution - Number of sides = 6

We know that number of diagonals in a polygon of n sides = $\frac{n(n-3)}{2}$

$$=\frac{6(6-3)}{2}=9$$

(d) polygon of 10 sides

Solution - Number of sides = 10

We know that number of diagonals in a polygon of n sides = $\frac{n(n-3)}{2}$

$$=\frac{10(10-3)}{2}=35$$

Example 9 – Find the number of sides of a regular polygon whose each exterior angle measures 45°.

Solution - Given each exterior angle of a regular polygon = 45°

We know that each exterior angle = $\frac{360^{\circ}}{n}$ where n is the number of sides

$$=>\frac{360^{\circ}}{n}=45=>n=\frac{360}{45}=8$$

Thus, number of sides = 8

Example 10 – What is the measure of

(a) Each exterior angle of a regular hexagon?

Solution - We know that each exterior angle = $\frac{360^{\circ}}{n}$ where n is the number of sides

Thus, each exterior angle of a regular hexagon (n= 6) = $\frac{360^{\circ}}{6} = 60^{\circ}$

(b) Each interior angle of a regular hexagon?

Solution - Each interior angle of a regular hexagon = $180 - 60 = 120^{\circ}$

Example 11 – Find the angle measure x in each of the following:

Solution - Number of side, n = 4

We know that sum of interior angles of a polygon of n sides = (2n - 4) right angles

=> 60 + 110 + 120 + x = 2(4) - 4 = 8 - 4 = 4 right angles = 360°

 $=> 290 + x = 360^{\circ}$

 $=> x = 360 - 290 = 70^{\circ}$

(b)

(a)

Solution - Interior angle $L ABC = (180 - 60) = 120^{\circ}$

And, interior angle L BCD = (180-50) = 130°

Now, in a pentagon,

Sum of all interior angles of a pentagon = (2(5) - 4) right angles

= 10 - 4 = 6 right angles $= 6 \times 90 = 540^{\circ}$

=> 50 + x + x + 120 + 130 = 540

=> 300 + 2x = 540

$$=> 2x = 540 - 300 = 240$$

=> x = 120

Example 12 – Look at the figures given below:

Solution - To find x + y + z

We know that sum of interior angles of triangle = 2(3) - 4 = 2 right angles = 2(90) = 180

- =>90 + 40 + LC = 180
- => 130 + LC = 180
- $=> LC = 180 130 = 50^{\circ}$
- Now, $y + 50 = 180 \Rightarrow y = 180 = -50 = 130$
- $40+x = 180 \Rightarrow x = 180-40 = 140$
- $90+z = 180 \Longrightarrow z = 180 90 = 90$
- Thus, $x + y + z = 140 + 130 + 90 = 360^{\circ}$

(b) Find x + y + z + t

Solution - We know that sum of interior angles of quadrilateral = 2(4) - 4 = 4 right angles = 4(90) = 360

=> 90 + 50 + 130 + LD = 360

=> 270 + LD = 360

 $=> LD = 360 - 270 = 90^{\circ}$

Now, 90 + t = 180 => t = 180-90 = 90

 $130 + x = 180 \Rightarrow x = 180 = 50$

 $90 + y = 180 \Rightarrow y = 180-90 = 90$

 $50 + z = 180 \Longrightarrow z = 180-50 = 130$

Thus, $x + y + z + t = 50+130+90+90 = 360^{\circ}$

Exercise 14A

Question 1 – Find the measure of each exterior angle of a regular

(a) Pentagon

Solution - Number of sides in pentagon = 5

Each exterior angle of a pentagon $=\frac{360^{\circ}}{5}=72^{\circ}$

(b) Hexagon

Solution - Number of sides in hexagon = 6

Each exterior angle of a hexagon = $\frac{360^{\circ}}{6} = 60^{\circ}$

(c) Heptagon

Solution - Number of sided in Heptagon = 7

Each exterior angle of a Heptagon $=\frac{360^{\circ}}{7}=51.4^{\circ}$

(d) Decagon

Solution - Number of sides in Decagon = 10

Each exterior angle of a Decagon = $\frac{360^{\circ}}{10} = 36^{\circ}$

Question 2 – Is it possible to have a regular polygon each of whose exterior angle is 50°?

Solution - Given that each of exterior angle of regular polygon = 50°

We know that each exterior angle $=\frac{360^{\circ}}{n}$ where n is the number of sides

 $=>\frac{360^{0}}{n}=50^{0}=>n=\frac{360}{50}=7.2$ is not a whole number

Thus, it is not possible to have a regular polygon each of whose exterior angle is 50°

Question 3 – Find the measure of each interior angle of a regular polygon having

(a) 10 sides

Solution - We know that each exterior angle = $\frac{360^{\circ}}{n}$ where n is the number of sides

Number of sides (n) = 10

Each exterior angle = $\frac{360^{\circ}}{10} = 36$

Thus, each interior angle = $180 - 36 = 144^{\circ}$

(b) 15 sides

Solution - We know that each exterior angle = $\frac{360^{\circ}}{n}$ where n is the number of sides.

Number of sides (n) = 15

Each exterior angle $=\frac{360^0}{15}=24$

Thus, each interior angle = $180 - 24 = 156^{\circ}$

Question 4 – Is it possible to have a regular polygon each of whose interior angles is 100°?

Solution - Given that each of interior angle of regular polygon = 100°

Exterior angle = $180 - 100 = 80^{\circ}$

We know that each exterior angle = $\frac{360^{\circ}}{n}$ where n is the number of sides

 $=>\frac{360^{\circ}}{n}=80^{\circ}=>n=\frac{360}{80}=4.5$ is not a whole number

Thus, it is not possible to have a regular polygon each of whose interior angle is 100°

Question 5 – What is the sum of all interior angles of a regular

(a) Pentagon

Solution - Number of sides = 5

We know that sum of all interior angles of a polygon = (2n - 4) right angles

= 2(5) - 4 = 10 - 4 = 6 right angles $= 6 \times 90 = 540^{\circ}$

(b) Hexagon

Solution - Number of sides = 6

We know that sum of all interior angles of a polygon = (2n - 4) right angles

= 2(6) - 4 = 12 - 4 = 8 right angles $= 8 \times 90 = 720^{\circ}$

(c) Nonagon

Solution - Number of sides = 9

We know that sum of all interior angles of a polygon = (2n - 4) right angles

= 2(9) - 4 = 18 - 4 = 14 right angles $= 14 \times 90 = 1260^{\circ}$

(d) Polygon of 12 sides

Solution - Number of sides = 12

We know that sum of all interior angles of a polygon = (2n - 4) right angles

= 2(12) - 4 = 24 - 4 = 20 right angles $= 20 \times 90 = 1800^{\circ}$

Question 6 – What is the number of diagonals in a

(a) Heptagon

Solution - Number of sides = 7

We know that number of diagonals in a polygon of n sides = $\frac{n(n-3)}{2}$

$$=\frac{7(7-3)}{2}=14$$

(b) octagon

Solution - Number of sides = 8

We know that number of diagonals in a polygon of n sides = $\frac{n(n-3)}{2}$

$$=\frac{8(8-3)}{2}=20$$

(c) polygon of 12 sides

Solution - Number of sides = 12

We know that number of diagonals in a polygon of n sides = $\frac{n(n-3)}{2}$

$$=\frac{12(12-3)}{2}=54$$

Question 7 – Find the number of sides of a regular polygon whose each exterior angle measures:

(a) 40°

Solution - Given each exterior angle of a regular polygon = 40°

We know that each exterior angle = $\frac{360^0}{n}$ where n is the number of sides

$$=>\frac{360^{0}}{n}=40 => n=\frac{360}{40}=9$$

Thus, number of sides = 9

(b) 36°

Solution - Given each exterior angle of a regular polygon = 36°

We know that each exterior angle = $\frac{360^{\circ}}{n}$ where n is the number of sides

$$=>\frac{360^{0}}{n}=36=>n=\frac{360}{36}=10$$

Thus, number of sides = 10

(c) 72°

Solution - Given each exterior angle of a regular polygon = 72°

We know that each exterior angle = $\frac{360^{\circ}}{n}$ where n is the number of sides

$$=>\frac{360^{0}}{n}=72 => n=\frac{360}{72}=5$$

Thus, number of sides = 5

(d) 30°

Solution - Given each exterior angle of a regular polygon = 30°

We know that each exterior angle $=\frac{360^{\circ}}{n}$ where n is the number of sides

$$=>\frac{360^{0}}{n}=30 => n=\frac{360}{30}=12$$

Thus, number of sides = 12

Solution - We know that sum of all exterior angles = $4 \text{ right angles} = 4 (90) = 360^{\circ}$

- =>90+50+115+x=360
- => 255 + x = 360
- $=> x = 360-255 = 105^{\circ}$

Question 9 Find the angle measure x in the given figure

Solution - Since ABCDE is a pentagon

Number of sides = 5

And, we know that that each interior angle = 180 - (each exterior angle)

$$= 180 - \left(\frac{360}{n}\right) = 180 - (360/5) = 180 - 72 = 1080$$

Exercise 14B

Question 1 – How many diagonals are there in a pentagon?

Solution - We know that number of diagonals in a polygon of n sides = $\frac{n(n-3)}{2}$

Thus, in a pentagon, number of diagonals $=\frac{5(5-3)}{2}=5$

Question 2 – How many diagonals are there in a hexagon?

Solution - We know that number of diagonals in a polygon of n sides = $\frac{n(n-3)}{2}$

Thus, in a hexagon, number of diagonals = $\frac{6(6-3)}{2} = 9$

Question 3 – How many diagonals are there in an octagon?

Solution - We know that number of diagonals in a polygon of n sides = $\frac{n(n-3)}{2}$

Thus, in a octagon, number of diagonals = $\frac{8(8-3)}{2} = 20$

Question 4 – How many diagonals are there in a polygon having 12 sides? Solution - We know that number of diagonals in a polygon of n sides = $\frac{n(n-3)}{2}$ Thus, in a polygon of sides 12, number of diagonals = $\frac{12(12-3)}{2} = 54$

Question 5 – A polygon has 27 diagonals. How many sides does it have? Solution - Given that diagonal of polygon = 27

Number of sides =?

We know that number of diagonals in a polygon of n sides = $\frac{n(n-3)}{2}$

$$=>\frac{n(n-3)}{2}=27$$

 $=>n (n-3)=54$

 $=> n^{2} - 3n = 54$ $=> n^{2} - 3n - 54 = 0$ $=> n^{2} - 9n + 6n - 54 = 0$ => n(n - 9) + 6(n - 9) = 0=> (n - 9)(n + 6) = 0=> n = 9 or - 6

But number of sides cannot be negative

Thus, number of sides = 9

Question 6 – The angles of a pentagon are x° , $(x + 20)^{\circ}$, $(x + 40)^{\circ}$, $(x + 60)^{\circ}$ and $(x + 80)^{\circ}$. The smallest angle of the pentagon is?

Solution - Given the angles of pentagon are x^0 , $(x + 20)^0$, $(x + 40)^0$, $(x + 60)^0$ and $(x + 80)^0$

We know that sum of interior angles of polygon of n sides = (2n - 4) right angles

Here n = 5

$$= x^{0}+(x+20)^{0}+(x+40)^{0}+(x+60)^{0}+(x+80)^{0}=2(5)-4$$
 right angles

=> 5x + 200 = 6(90)

=> 5x + 200 = 540

=> 5x = 540-200 = 340

$$=> x = 68$$

Thus, smallest angle of the pentagon is 68°

Question 7 – The measure of each exterior angle of a regular polygon is 40°. How many sides does it have?

Solution - Given that each exterior angle of a regular polygon = 40°

Number of sides =?

We know that each exterior angle of polygon of n sides = $\frac{360^{\circ}}{n}$ where n is the number of sides

$$=>\frac{360^{0}}{n}=40 => n=\frac{360}{40}=9$$

Thus, number of sides = 9

Question 8 – Each interior angle of a polygon is 108°. How many sides does it have?

Solution - Given that each interior angle of a polygon = 108°

Thus, each exterior angle = $180 - 108 = 72^{\circ}$

Number of sides =?

We know that each exterior angle of polygon of n sides = $\frac{360^{\circ}}{n}$ where n is the number of sides

$$=>\frac{360^{0}}{n}=72 => n=\frac{360}{72}=5$$

Thus, number of sides = 5

Question 9 – Each interior angle of a polygon is 135°. How many sides does it have?

Solution - Given that each interior angle of a polygon = 135°

Thus, each exterior angle = $180 - 135 = 45^{\circ}$

Number of sides =?

We know that each exterior angle of polygon of n sides = $\frac{360^{\circ}}{n}$ where n is the number of sides

$$=>\frac{360^{0}}{n}=45=>n=\frac{360}{45}=8$$

Thus, number of sides = 8

Question 10 – In a regular polygon, each interior angle is thrice the exterior angle. The number of sides of the polygon is?

Solution - Let each exterior angle be x^o

Then, each interior angle = $3x^{0}$

Number of sides =?

Each interior angle = 180 - x

=> 3x = 180 - x

=> 3x + x = 180

=> 4x = 180

$=> x = 45^{\circ}$

Thus, each exterior angle is 45°

We know that each exterior angle of polygon of n sides = $\frac{360^{\circ}}{n}$ where n is the number of sides

$$=>\frac{360^{\circ}}{n}=45=>n=\frac{360}{45}=8$$

Thus, number of sides = 8

Question 11 – Each interior angle of a regular decagon is?

Solution - In a decagon, number of sides = 10

So, each exterior angle = $360/10 = 36^{\circ}$

Thus, each interior angle = $180 - 36 = 144^{\circ}$

Question 12 – The sum of all interior angles of a hexagon is?

Solution - In a hexagon, number of sides = 6

We know that sum of all interior angles of a polygon = (2n-4) right angles

= 2(6) - 4 = 8 right angles

Question 13 – The sum of all interior angles of a regular polygon is 1080°. What is the measure of each of its interior angles?

Solution - Given that sum of all interior angles of a regular polygon = 1080°

We know that sum of all interior angles of a polygon = (2n-4) right angles

- $=> (2n 4) \times 90 = 1080$
- $\Rightarrow 2n 4 = 1080/90$
- => 2n 4 = 12
- => 2n = 16 => n = 8

Each exterior angle = $360/8 = 45^{\circ}$

Thus, each interior angle = $180 - 45 = 135^{\circ}$

Question 14 – The interior angle of a regular polygon exceeds its exterior angle by 108°. How many sides does the polygon have?

Solution - Let the exterior angle of a regular polygon be x^0

Then, each interior angle = $x + 108^{\circ}$

Since, each interior angle = 180 - (each exterior angle)

=> x + 108 = 180 - x

=> x + x = 180 - 108 = 72

=> 2x = 72

 $=> x = 36^{\circ}$

Each exterior angle = 36

 $=> 360/n = 36^{\circ}$

=> n = 360/36 = 10